Neonatal EEG graded for severity of background abnormalities in hypoxic-ischaemic encephalopathy

Abstract This report describes a set of neonatal electroencephalogram (EEG) recordings graded according to the severity of abnormalities in the background pattern. The dataset consists of 169 hours of multichannel EEG from 53 neonates recorded in a neonatal intensive care unit. All neonates received...

Full description

Bibliographic Details
Main Authors: John M. O’Toole, Sean R. Mathieson, Sumit A. Raurale, Fabio Magarelli, William P. Marnane, Gordon Lightbody, Geraldine B. Boylan
Format: Article
Language:English
Published: Nature Portfolio 2023-03-01
Series:Scientific Data
Online Access:https://doi.org/10.1038/s41597-023-02002-8
_version_ 1827985192028995584
author John M. O’Toole
Sean R. Mathieson
Sumit A. Raurale
Fabio Magarelli
William P. Marnane
Gordon Lightbody
Geraldine B. Boylan
author_facet John M. O’Toole
Sean R. Mathieson
Sumit A. Raurale
Fabio Magarelli
William P. Marnane
Gordon Lightbody
Geraldine B. Boylan
author_sort John M. O’Toole
collection DOAJ
description Abstract This report describes a set of neonatal electroencephalogram (EEG) recordings graded according to the severity of abnormalities in the background pattern. The dataset consists of 169 hours of multichannel EEG from 53 neonates recorded in a neonatal intensive care unit. All neonates received a diagnosis of hypoxic-ischaemic encephalopathy (HIE), the most common cause of brain injury in full term infants. For each neonate, multiple 1-hour epochs of good quality EEG were selected and then graded for background abnormalities. The grading system assesses EEG attributes such as amplitude, continuity, sleep–wake cycling, symmetry and synchrony, and abnormal waveforms. Background severity was then categorised into 4 grades: normal or mildly abnormal EEG, moderately abnormal EEG, majorly abnormal EEG, and inactive EEG. The data can be used as a reference set of multi-channel EEG for neonates with HIE, for EEG training purposes, or for developing and evaluating automated grading algorithms.
first_indexed 2024-04-09T23:10:58Z
format Article
id doaj.art-9934f42db3474807abd601b063e7c474
institution Directory Open Access Journal
issn 2052-4463
language English
last_indexed 2024-04-09T23:10:58Z
publishDate 2023-03-01
publisher Nature Portfolio
record_format Article
series Scientific Data
spelling doaj.art-9934f42db3474807abd601b063e7c4742023-03-22T10:23:10ZengNature PortfolioScientific Data2052-44632023-03-011011810.1038/s41597-023-02002-8Neonatal EEG graded for severity of background abnormalities in hypoxic-ischaemic encephalopathyJohn M. O’Toole0Sean R. Mathieson1Sumit A. Raurale2Fabio Magarelli3William P. Marnane4Gordon Lightbody5Geraldine B. Boylan6INFANT Research Centre, University College CorkINFANT Research Centre, University College CorkINFANT Research Centre, University College CorkINFANT Research Centre, University College CorkINFANT Research Centre, University College CorkINFANT Research Centre, University College CorkINFANT Research Centre, University College CorkAbstract This report describes a set of neonatal electroencephalogram (EEG) recordings graded according to the severity of abnormalities in the background pattern. The dataset consists of 169 hours of multichannel EEG from 53 neonates recorded in a neonatal intensive care unit. All neonates received a diagnosis of hypoxic-ischaemic encephalopathy (HIE), the most common cause of brain injury in full term infants. For each neonate, multiple 1-hour epochs of good quality EEG were selected and then graded for background abnormalities. The grading system assesses EEG attributes such as amplitude, continuity, sleep–wake cycling, symmetry and synchrony, and abnormal waveforms. Background severity was then categorised into 4 grades: normal or mildly abnormal EEG, moderately abnormal EEG, majorly abnormal EEG, and inactive EEG. The data can be used as a reference set of multi-channel EEG for neonates with HIE, for EEG training purposes, or for developing and evaluating automated grading algorithms.https://doi.org/10.1038/s41597-023-02002-8
spellingShingle John M. O’Toole
Sean R. Mathieson
Sumit A. Raurale
Fabio Magarelli
William P. Marnane
Gordon Lightbody
Geraldine B. Boylan
Neonatal EEG graded for severity of background abnormalities in hypoxic-ischaemic encephalopathy
Scientific Data
title Neonatal EEG graded for severity of background abnormalities in hypoxic-ischaemic encephalopathy
title_full Neonatal EEG graded for severity of background abnormalities in hypoxic-ischaemic encephalopathy
title_fullStr Neonatal EEG graded for severity of background abnormalities in hypoxic-ischaemic encephalopathy
title_full_unstemmed Neonatal EEG graded for severity of background abnormalities in hypoxic-ischaemic encephalopathy
title_short Neonatal EEG graded for severity of background abnormalities in hypoxic-ischaemic encephalopathy
title_sort neonatal eeg graded for severity of background abnormalities in hypoxic ischaemic encephalopathy
url https://doi.org/10.1038/s41597-023-02002-8
work_keys_str_mv AT johnmotoole neonataleeggradedforseverityofbackgroundabnormalitiesinhypoxicischaemicencephalopathy
AT seanrmathieson neonataleeggradedforseverityofbackgroundabnormalitiesinhypoxicischaemicencephalopathy
AT sumitaraurale neonataleeggradedforseverityofbackgroundabnormalitiesinhypoxicischaemicencephalopathy
AT fabiomagarelli neonataleeggradedforseverityofbackgroundabnormalitiesinhypoxicischaemicencephalopathy
AT williampmarnane neonataleeggradedforseverityofbackgroundabnormalitiesinhypoxicischaemicencephalopathy
AT gordonlightbody neonataleeggradedforseverityofbackgroundabnormalitiesinhypoxicischaemicencephalopathy
AT geraldinebboylan neonataleeggradedforseverityofbackgroundabnormalitiesinhypoxicischaemicencephalopathy