Accessible and Deterministic Automata: Enumeration and Boltzmann Samplers

We present a bijection between the set $\mathcal{A}_n$ of deterministic and accessible automata with $n$ states on a $k$-letters alphabet and some diagrams, which can themselves be represented as partitions of the set $[\![ 1..(kn+1) ]\!]$ into $n$ non-empty parts. This combinatorial construction sh...

Full description

Bibliographic Details
Main Authors: Frédérique Bassino, Cyril Nicaud
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2006-01-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/3499/pdf
_version_ 1797270433434697728
author Frédérique Bassino
Cyril Nicaud
author_facet Frédérique Bassino
Cyril Nicaud
author_sort Frédérique Bassino
collection DOAJ
description We present a bijection between the set $\mathcal{A}_n$ of deterministic and accessible automata with $n$ states on a $k$-letters alphabet and some diagrams, which can themselves be represented as partitions of the set $[\![ 1..(kn+1) ]\!]$ into $n$ non-empty parts. This combinatorial construction shows that the asymptotic order of the cardinality of $\mathcal{A}_n$ is related to the Stirling number $\{^{kn}_n\}$. Our bijective approach also yields an efficient random sampler of automata with $n$ states, of complexity $O(n^{3/2})$, using the framework of Boltzmann samplers.
first_indexed 2024-04-25T02:04:11Z
format Article
id doaj.art-9935d85d78fa466f9622ecfa0b2fc791
institution Directory Open Access Journal
issn 1365-8050
language English
last_indexed 2024-04-25T02:04:11Z
publishDate 2006-01-01
publisher Discrete Mathematics & Theoretical Computer Science
record_format Article
series Discrete Mathematics & Theoretical Computer Science
spelling doaj.art-9935d85d78fa466f9622ecfa0b2fc7912024-03-07T14:34:36ZengDiscrete Mathematics & Theoretical Computer ScienceDiscrete Mathematics & Theoretical Computer Science1365-80502006-01-01DMTCS Proceedings vol. AG,...Proceedings10.46298/dmtcs.34993499Accessible and Deterministic Automata: Enumeration and Boltzmann SamplersFrédérique Bassino0https://orcid.org/0000-0002-0127-9352Cyril Nicaud1https://orcid.org/0000-0002-8770-0119Laboratoire d'Informatique Gaspard-MongeLaboratoire d'Informatique Gaspard-MongeWe present a bijection between the set $\mathcal{A}_n$ of deterministic and accessible automata with $n$ states on a $k$-letters alphabet and some diagrams, which can themselves be represented as partitions of the set $[\![ 1..(kn+1) ]\!]$ into $n$ non-empty parts. This combinatorial construction shows that the asymptotic order of the cardinality of $\mathcal{A}_n$ is related to the Stirling number $\{^{kn}_n\}$. Our bijective approach also yields an efficient random sampler of automata with $n$ states, of complexity $O(n^{3/2})$, using the framework of Boltzmann samplers.https://dmtcs.episciences.org/3499/pdffinite automatabijectionasymptotic enumerationrandom generationboltzmann samplers[info.info-ds] computer science [cs]/data structures and algorithms [cs.ds][info.info-dm] computer science [cs]/discrete mathematics [cs.dm][math.math-co] mathematics [math]/combinatorics [math.co]
spellingShingle Frédérique Bassino
Cyril Nicaud
Accessible and Deterministic Automata: Enumeration and Boltzmann Samplers
Discrete Mathematics & Theoretical Computer Science
finite automata
bijection
asymptotic enumeration
random generation
boltzmann samplers
[info.info-ds] computer science [cs]/data structures and algorithms [cs.ds]
[info.info-dm] computer science [cs]/discrete mathematics [cs.dm]
[math.math-co] mathematics [math]/combinatorics [math.co]
title Accessible and Deterministic Automata: Enumeration and Boltzmann Samplers
title_full Accessible and Deterministic Automata: Enumeration and Boltzmann Samplers
title_fullStr Accessible and Deterministic Automata: Enumeration and Boltzmann Samplers
title_full_unstemmed Accessible and Deterministic Automata: Enumeration and Boltzmann Samplers
title_short Accessible and Deterministic Automata: Enumeration and Boltzmann Samplers
title_sort accessible and deterministic automata enumeration and boltzmann samplers
topic finite automata
bijection
asymptotic enumeration
random generation
boltzmann samplers
[info.info-ds] computer science [cs]/data structures and algorithms [cs.ds]
[info.info-dm] computer science [cs]/discrete mathematics [cs.dm]
[math.math-co] mathematics [math]/combinatorics [math.co]
url https://dmtcs.episciences.org/3499/pdf
work_keys_str_mv AT frederiquebassino accessibleanddeterministicautomataenumerationandboltzmannsamplers
AT cyrilnicaud accessibleanddeterministicautomataenumerationandboltzmannsamplers