Field Measurements and Modelling of Vessel-Generated Waves and Caused Bank Erosion—A Case Study at the Sabine–Neches Waterway, Texas, USA

The Sabine–Neches Waterway (SNWW) is home to the largest commercial port of the United States military and of the refineries that produce 60% of the nation’s commercial jet fuel. The deposited sediments from bank erosion due to wake wash result in frequent dredging to keep the waterway operational....

Full description

Bibliographic Details
Main Authors: Qin Qian, Lin Su, Victor Zaloom, Mien Jao, Xing Wu, Keh-Han Wang
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/15/1/35
Description
Summary:The Sabine–Neches Waterway (SNWW) is home to the largest commercial port of the United States military and of the refineries that produce 60% of the nation’s commercial jet fuel. The deposited sediments from bank erosion due to wake wash result in frequent dredging to keep the waterway operational. This study investigates vessel-generated waves and their impacts on bank erosion. Surface wave data at Golden Pass and the City of Port Arthur Park dock were measured using a 1 MHz Aquadopp Profiler. Bank properties such as soil strengths were measured and soil samples were collected. Acceptable predictive models for estimating the maximum wave heights caused by vessels sailing through the SNWW were developed and validated with recorded data. Vessel-generated waves are found to produce enough shear forces to mobilize bed sediments and cause bank erosion. The bed erosion rate increases with an increase in wave height or a decrease in water depth. Bank and bank toe erosion occurs at both monitoring locations. Bank stability and toe erosion model (BSTEM) results suggest that potential bank protection options are large woody debris and riprap at Port Arthur. However, other stronger stabilization methods are required at Golden Pass.
ISSN:2073-4441