Nucleotide diversity of Maize ZmBT1 gene and association with starch physicochemical properties.

Cereal Brittle1 protein has been demonstrated to be involved in the ADP-Glc transport into endosperm plastids, and plays vital roles in the biosynthesis of starch. In this study, the genomic sequences of the ZmBT1 gene in 80 elite maize inbred lines were obtained, and the nucleotide polymorphisms an...

Full description

Bibliographic Details
Main Authors: Shuhui Xu, Zefeng Yang, Enying Zhang, Ying Jiang, Liang Pan, Qing Chen, Zhengwen Xie, Chenwu Xu
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4118901?pdf=render
Description
Summary:Cereal Brittle1 protein has been demonstrated to be involved in the ADP-Glc transport into endosperm plastids, and plays vital roles in the biosynthesis of starch. In this study, the genomic sequences of the ZmBT1 gene in 80 elite maize inbred lines were obtained, and the nucleotide polymorphisms and haplotype diversity were detected. A total of 30 variants, including 22 SNPs and 8 indels, were detected from the full sequences of this gene. Among these polymorphic sites, 9 SNPs and 2 indels were found to be located in the coding region. The polymorphisms of CDS sequences classified the maize ZmBT1 gene into 6 haplotypes, which encode 6 different ZmBT1 proteins. Neutrality tests revealed a decrease in population size and/or balancing selection on the maize ZmBT1 locus. To detect the association between sequence variations of this gene and the starch physicochemical properties, 7 pasting and 4 gelatinization traits of starch were measured for the tested inbred lines using rapid visco analyzer (RVA) and differential scanning calorimeter (DSC), respectively. The result of association analysis revealed that an indel in the coding region was significantly associated with the phenotypic variation of starch gelatinization enthalpy.
ISSN:1932-6203