Distinct switching of chiral transport in the kagome metals KV3Sb5 and CsV3Sb5

Abstract The kagome metals AV3Sb5 (A = K, Rb, Cs) present an ideal sandbox to study the interrelation between multiple coexisting correlated phases such as charge order and superconductivity. So far, no consensus on the microscopic nature of these states has been reached as the proposals struggle to...

Full description

Bibliographic Details
Main Authors: Chunyu Guo, Maarten R. van Delft, Martin Gutierrez-Amigo, Dong Chen, Carsten Putzke, Glenn Wagner, Mark H. Fischer, Titus Neupert, Ion Errea, Maia G. Vergniory, Steffen Wiedmann, Claudia Felser, Philip J. W. Moll
Format: Article
Language:English
Published: Nature Portfolio 2024-02-01
Series:npj Quantum Materials
Online Access:https://doi.org/10.1038/s41535-024-00629-3
Description
Summary:Abstract The kagome metals AV3Sb5 (A = K, Rb, Cs) present an ideal sandbox to study the interrelation between multiple coexisting correlated phases such as charge order and superconductivity. So far, no consensus on the microscopic nature of these states has been reached as the proposals struggle to explain all their exotic physical properties. Among these, field-switchable electric magneto-chiral anisotropy (eMChA) in CsV3Sb5 provides intriguing evidence for a rewindable electronic chirality, yet the other family members have not been likewise investigated. Here, we present a comparative study of magneto-chiral transport between CsV3Sb5 and KV3Sb5. Despite their similar electronic structure, KV3Sb5 displays negligible eMChA, if any, and with no field switchability. This is in stark contrast to the non-saturating eMChA in CsV3Sb5 even in high fields up to 35 T. In light of their similar band structures, the stark difference in eMChA suggests its origin in the correlated states. Clearly, the V kagome nets alone are not sufficient to describe the physics and the interactions with their environment are crucial in determining the nature of their low-temperature state.
ISSN:2397-4648