Effect of Welding Parameters on Mechanical Properties and Microstructure of Friction Stir Welded AA7075-T651 Aluminum Alloy Butt Joints

The aim of this study was to examine the mechanical properties of 5-mm-thick AA7075-T651 alloy using three different welding velocities, 50, 75 and 100 mm/min, and four various sets of tool rotation speeds: 400, 600, 800 and 1000 rpm. All obtained joints were defect-free. In all cases, the values of...

Full description

Bibliographic Details
Main Authors: Robert Kosturek, Janusz Torzewski, Marcin Wachowski, Lucjan Śnieżek
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/15/17/5950
Description
Summary:The aim of this study was to examine the mechanical properties of 5-mm-thick AA7075-T651 alloy using three different welding velocities, 50, 75 and 100 mm/min, and four various sets of tool rotation speeds: 400, 600, 800 and 1000 rpm. All obtained joints were defect-free. In all cases, the values of UTS exceeded 400 MPa, corresponding to 68.5% minimum joint efficiency. The highest value of 447.7 MPa (76.7% joint efficiency) was reported for the joint produced via 400 rpm tool rotation speed and 100 mm/min welding velocity. The SZ microstructure of the strongest joint was characterized by a 5.2 ± 1.7 μm grain size and microhardness of approximately 145 HV0.1. The TMAZ/HAZ interface was identified as the low-hardness zone (105–115 HV0.1, depending on parameters), where the failure of the tensile samples takes place. The fracture mechanism is dominated by a transgranular ductile rupture with microvoid coalescence.
ISSN:1996-1944