Effect of Pre-Stress on Laser-Induced Thermoplastic Deformation of Inconel 718 Beams

Laser thermal forming is an application of laser heating without any intentional use of external forces. Force-assisted laser bending and laser-assisted bending are hybrid techniques, which combine the use of external forces and local heating to increase the effectiveness of forming. A quantitative...

Full description

Bibliographic Details
Main Authors: Jacek Widłaszewski, Zdzisław Nowak, Piotr Kurp
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/14/8/1847
Description
Summary:Laser thermal forming is an application of laser heating without any intentional use of external forces. Force-assisted laser bending and laser-assisted bending are hybrid techniques, which combine the use of external forces and local heating to increase the effectiveness of forming. A quantitative description of bending deformation induced by concurrent laser heating and mechanical loading is proposed in this study. Mechanical loading is expressed by the bending moment while the curvature is used to describe the resulting deformation. The contribution of a relatively less known mechanism of laser thermal bending in the hybrid process is identified. The mechanism is able to produce the so-called convex deformation, i.e., bending away from the incident laser beam. Experimental and numerical analysis is performed with thin-walled beams made of Inconel 718 nickel-based superalloy in the factory-annealed state. The Johnson–Cook constitutive material model is used in numerical simulations validated by experimental results.
ISSN:1996-1944