Summary: | A vertical irregularity setback in reinforced concrete (RC) building affects its performance and response especially subjected to earthquake ground motions. It is necessary to understand how the seismic damage is established due to setbacks and avoid damage concentration on the irregularity section. The objective of this study is to propose a formula to estimate the damage distribution along the height of the setback building from a geometric measure of the degree of irregularity. First, previous experimental tests for two types of setback buildings, a towered and a stepped setback frames, were analyzed to verify the accuracy of the frame analysis. The results of the frame analysis considerably matched the experimental test results. Furthermore, to study the relationship between the degree of setback and the distribution of damage, a parametric study was conducted using 35 reinforced concrete setback frames, consisting of models with stepped setback type and towered setback type with different degrees of setback. The inelastic dynamic analyses of all the frames under three earthquake ground motions were conducted. The irregularity indices proposed in literature were adopted to express the degree of setback and the structural damage was expressed by the Park–Ang damage index. Using nonlinear regression analysis, formulas to estimate damage index ratio between two main structure parts (tower and base) from setback indices were proposed. Finally, the proposed formula was applied to the experimental test results to confirm its validity.
|