Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements – corrected

<p>The NASA Atmospheric Tomography (ATom) mission built a photochemical climatology of air parcels based on in situ measurements with the NASA DC-8 aircraft along objectively planned profiling transects through the middle of the Pacific and Atlantic oceans. In this paper we present and analyze...

Full description

Bibliographic Details
Main Authors: H. Guo, C. M. Flynn, M. J. Prather, S. A. Strode, S. D. Steenrod, L. Emmons, F. Lacey, J.-F. Lamarque, A. M. Fiore, G. Correa, L. T. Murray, G. M. Wolfe, J. M. St. Clair, M. Kim, J. Crounse, G. Diskin, J. DiGangi, B. C. Daube, R. Commane, K. McKain, J. Peischl, T. B. Ryerson, C. Thompson, T. F. Hanisco, D. Blake, N. J. Blake, E. C. Apel, R. S. Hornbrook, J. W. Elkins, E. J. Hintsa, F. L. Moore, S. C. Wofsy
Format: Article
Language:English
Published: Copernicus Publications 2023-01-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/23/99/2023/acp-23-99-2023.pdf
_version_ 1797962284339822592
author H. Guo
C. M. Flynn
M. J. Prather
S. A. Strode
S. D. Steenrod
L. Emmons
F. Lacey
F. Lacey
J.-F. Lamarque
A. M. Fiore
G. Correa
L. T. Murray
G. M. Wolfe
G. M. Wolfe
J. M. St. Clair
J. M. St. Clair
M. Kim
J. Crounse
G. Diskin
J. DiGangi
B. C. Daube
B. C. Daube
R. Commane
R. Commane
K. McKain
K. McKain
J. Peischl
J. Peischl
T. B. Ryerson
T. B. Ryerson
C. Thompson
T. F. Hanisco
D. Blake
N. J. Blake
E. C. Apel
R. S. Hornbrook
J. W. Elkins
E. J. Hintsa
E. J. Hintsa
F. L. Moore
F. L. Moore
S. C. Wofsy
author_facet H. Guo
C. M. Flynn
M. J. Prather
S. A. Strode
S. D. Steenrod
L. Emmons
F. Lacey
F. Lacey
J.-F. Lamarque
A. M. Fiore
G. Correa
L. T. Murray
G. M. Wolfe
G. M. Wolfe
J. M. St. Clair
J. M. St. Clair
M. Kim
J. Crounse
G. Diskin
J. DiGangi
B. C. Daube
B. C. Daube
R. Commane
R. Commane
K. McKain
K. McKain
J. Peischl
J. Peischl
T. B. Ryerson
T. B. Ryerson
C. Thompson
T. F. Hanisco
D. Blake
N. J. Blake
E. C. Apel
R. S. Hornbrook
J. W. Elkins
E. J. Hintsa
E. J. Hintsa
F. L. Moore
F. L. Moore
S. C. Wofsy
author_sort H. Guo
collection DOAJ
description <p>The NASA Atmospheric Tomography (ATom) mission built a photochemical climatology of air parcels based on in situ measurements with the NASA DC-8 aircraft along objectively planned profiling transects through the middle of the Pacific and Atlantic oceans. In this paper we present and analyze a data set of 10 s (2 km) merged and gap-filled observations of the key reactive species driving the chemical budgets of O<span class="inline-formula"><sub>3</sub></span> and CH<span class="inline-formula"><sub>4</sub></span> (O<span class="inline-formula"><sub>3</sub></span>, CH<span class="inline-formula"><sub>4</sub></span>, CO, H<span class="inline-formula"><sub>2</sub></span>O, HCHO, H<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>2</sub></span>, CH<span class="inline-formula"><sub>3</sub></span>OOH, C<span class="inline-formula"><sub>2</sub></span>H<span class="inline-formula"><sub>6</sub></span>, higher alkanes, alkenes, aromatics, NO<span class="inline-formula"><sub><i>x</i></sub></span>, HNO<span class="inline-formula"><sub>3</sub></span>, HNO<span class="inline-formula"><sub>4</sub></span>, peroxyacetyl nitrate, and other organic nitrates), consisting of 146 494 distinct air parcels from ATom deployments 1 through 4. Six models calculated the O<span class="inline-formula"><sub>3</sub></span> and CH<span class="inline-formula"><sub>4</sub></span> photochemical tendencies from this modeling data stream for ATom 1. We find that 80 %–90 % of the total reactivity lies in the top 50 % of the parcels and 25 %–35 % in the top 10 %, supporting previous model-only studies that tropospheric chemistry is driven by a fraction of all the air. Surprisingly, the probability densities of species and reactivities averaged on a model scale (100 km) differ only slightly from the 2 km ATom 10 s data, indicating that much of the heterogeneity in tropospheric chemistry can be captured with current global chemistry models. Comparing the ATom reactivities over the tropical oceans with climatological statistics from six global chemistry models, we find generally good agreement with the reactivity rates for O<span class="inline-formula"><sub>3</sub></span> and CH<span class="inline-formula"><sub>4</sub></span>. Models distinctly underestimate O<span class="inline-formula"><sub>3</sub></span> production below 2 km relative to the mid-troposphere, and this can be traced to lower NO<span class="inline-formula"><sub><i>x</i></sub></span> levels than observed. Attaching photochemical reactivities to measurements of chemical species allows for a richer, yet more constrained-to-what-matters, set of metrics for model evaluation. This paper presents a corrected version of the paper published under the same authors and title (sans “corrected”) as <a href="https://doi.org/10.5194/acp-21-13729-2021">https://doi.org/10.5194/acp-21-13729-2021</a>.</p>
first_indexed 2024-04-11T01:10:58Z
format Article
id doaj.art-99b21b9190d945c2b0745c450081f986
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-04-11T01:10:58Z
publishDate 2023-01-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-99b21b9190d945c2b0745c450081f9862023-01-04T05:38:15ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242023-01-01239911710.5194/acp-23-99-2023Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements – correctedH. Guo0C. M. Flynn1M. J. Prather2S. A. Strode3S. D. Steenrod4L. Emmons5F. Lacey6F. Lacey7J.-F. Lamarque8A. M. Fiore9G. Correa10L. T. Murray11G. M. Wolfe12G. M. Wolfe13J. M. St. Clair14J. M. St. Clair15M. Kim16J. Crounse17G. Diskin18J. DiGangi19B. C. Daube20B. C. Daube21R. Commane22R. Commane23K. McKain24K. McKain25J. Peischl26J. Peischl27T. B. Ryerson28T. B. Ryerson29C. Thompson30T. F. Hanisco31D. Blake32N. J. Blake33E. C. Apel34R. S. Hornbrook35J. W. Elkins36E. J. Hintsa37E. J. Hintsa38F. L. Moore39F. L. Moore40S. C. Wofsy41Department of Earth System Science, University of California, Irvine, CA 92697, USADepartment of Meteorology, Stockholm University, Stockholm, 106 91, SwedenDepartment of Earth System Science, University of California, Irvine, CA 92697, USAAtmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USAAtmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USAAtmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80301, USAAtmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80301, USADepartment of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USAAtmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80301, USADepartment of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USADepartment of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USADepartment of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14611, USAAtmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USAJoint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, MD 21228, USAAtmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USAJoint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, MD 21228, USADepartment of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USAAtmospheric Composition, NASA Langley Research Center, Hampton, VA 23666, USAAtmospheric Composition, NASA Langley Research Center, Hampton, VA 23666, USAAtmospheric Composition, NASA Langley Research Center, Hampton, VA 23666, USAJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USADepartment of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USAJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USADepartment of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USACooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USAGlobal Monitoring Division, Earth System Research Laboratory, NOAA, Boulder, CO 80305, USAGlobal Monitoring Division, Earth System Research Laboratory, NOAA, Boulder, CO 80305, USAChemical Sciences Division, National Oceanic and Atmospheric Administration Earth System Research Laboratory, Boulder, CO 80305, USACooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USAChemical Sciences Division, National Oceanic and Atmospheric Administration Earth System Research Laboratory, Boulder, CO 80305, USACooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USAAtmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USADepartment of Chemistry, University of California, Irvine, CA 92697, USADepartment of Chemistry, University of California, Irvine, CA 92697, USAAtmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80301, USAAtmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80301, USAGlobal Monitoring Division, Earth System Research Laboratory, NOAA, Boulder, CO 80305, USACooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USAGlobal Monitoring Division, Earth System Research Laboratory, NOAA, Boulder, CO 80305, USACooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USAGlobal Monitoring Division, Earth System Research Laboratory, NOAA, Boulder, CO 80305, USAJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA<p>The NASA Atmospheric Tomography (ATom) mission built a photochemical climatology of air parcels based on in situ measurements with the NASA DC-8 aircraft along objectively planned profiling transects through the middle of the Pacific and Atlantic oceans. In this paper we present and analyze a data set of 10 s (2 km) merged and gap-filled observations of the key reactive species driving the chemical budgets of O<span class="inline-formula"><sub>3</sub></span> and CH<span class="inline-formula"><sub>4</sub></span> (O<span class="inline-formula"><sub>3</sub></span>, CH<span class="inline-formula"><sub>4</sub></span>, CO, H<span class="inline-formula"><sub>2</sub></span>O, HCHO, H<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>2</sub></span>, CH<span class="inline-formula"><sub>3</sub></span>OOH, C<span class="inline-formula"><sub>2</sub></span>H<span class="inline-formula"><sub>6</sub></span>, higher alkanes, alkenes, aromatics, NO<span class="inline-formula"><sub><i>x</i></sub></span>, HNO<span class="inline-formula"><sub>3</sub></span>, HNO<span class="inline-formula"><sub>4</sub></span>, peroxyacetyl nitrate, and other organic nitrates), consisting of 146 494 distinct air parcels from ATom deployments 1 through 4. Six models calculated the O<span class="inline-formula"><sub>3</sub></span> and CH<span class="inline-formula"><sub>4</sub></span> photochemical tendencies from this modeling data stream for ATom 1. We find that 80 %–90 % of the total reactivity lies in the top 50 % of the parcels and 25 %–35 % in the top 10 %, supporting previous model-only studies that tropospheric chemistry is driven by a fraction of all the air. Surprisingly, the probability densities of species and reactivities averaged on a model scale (100 km) differ only slightly from the 2 km ATom 10 s data, indicating that much of the heterogeneity in tropospheric chemistry can be captured with current global chemistry models. Comparing the ATom reactivities over the tropical oceans with climatological statistics from six global chemistry models, we find generally good agreement with the reactivity rates for O<span class="inline-formula"><sub>3</sub></span> and CH<span class="inline-formula"><sub>4</sub></span>. Models distinctly underestimate O<span class="inline-formula"><sub>3</sub></span> production below 2 km relative to the mid-troposphere, and this can be traced to lower NO<span class="inline-formula"><sub><i>x</i></sub></span> levels than observed. Attaching photochemical reactivities to measurements of chemical species allows for a richer, yet more constrained-to-what-matters, set of metrics for model evaluation. This paper presents a corrected version of the paper published under the same authors and title (sans “corrected”) as <a href="https://doi.org/10.5194/acp-21-13729-2021">https://doi.org/10.5194/acp-21-13729-2021</a>.</p>https://acp.copernicus.org/articles/23/99/2023/acp-23-99-2023.pdf
spellingShingle H. Guo
C. M. Flynn
M. J. Prather
S. A. Strode
S. D. Steenrod
L. Emmons
F. Lacey
F. Lacey
J.-F. Lamarque
A. M. Fiore
G. Correa
L. T. Murray
G. M. Wolfe
G. M. Wolfe
J. M. St. Clair
J. M. St. Clair
M. Kim
J. Crounse
G. Diskin
J. DiGangi
B. C. Daube
B. C. Daube
R. Commane
R. Commane
K. McKain
K. McKain
J. Peischl
J. Peischl
T. B. Ryerson
T. B. Ryerson
C. Thompson
T. F. Hanisco
D. Blake
N. J. Blake
E. C. Apel
R. S. Hornbrook
J. W. Elkins
E. J. Hintsa
E. J. Hintsa
F. L. Moore
F. L. Moore
S. C. Wofsy
Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements – corrected
Atmospheric Chemistry and Physics
title Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements – corrected
title_full Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements – corrected
title_fullStr Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements – corrected
title_full_unstemmed Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements – corrected
title_short Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements – corrected
title_sort heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements corrected
url https://acp.copernicus.org/articles/23/99/2023/acp-23-99-2023.pdf
work_keys_str_mv AT hguo heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT cmflynn heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT mjprather heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT sastrode heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT sdsteenrod heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT lemmons heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT flacey heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT flacey heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT jflamarque heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT amfiore heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT gcorrea heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT ltmurray heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT gmwolfe heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT gmwolfe heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT jmstclair heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT jmstclair heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT mkim heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT jcrounse heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT gdiskin heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT jdigangi heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT bcdaube heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT bcdaube heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT rcommane heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT rcommane heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT kmckain heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT kmckain heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT jpeischl heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT jpeischl heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT tbryerson heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT tbryerson heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT cthompson heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT tfhanisco heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT dblake heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT njblake heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT ecapel heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT rshornbrook heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT jwelkins heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT ejhintsa heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT ejhintsa heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT flmoore heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT flmoore heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected
AT scwofsy heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected