Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements – corrected
<p>The NASA Atmospheric Tomography (ATom) mission built a photochemical climatology of air parcels based on in situ measurements with the NASA DC-8 aircraft along objectively planned profiling transects through the middle of the Pacific and Atlantic oceans. In this paper we present and analyze...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2023-01-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://acp.copernicus.org/articles/23/99/2023/acp-23-99-2023.pdf |
_version_ | 1797962284339822592 |
---|---|
author | H. Guo C. M. Flynn M. J. Prather S. A. Strode S. D. Steenrod L. Emmons F. Lacey F. Lacey J.-F. Lamarque A. M. Fiore G. Correa L. T. Murray G. M. Wolfe G. M. Wolfe J. M. St. Clair J. M. St. Clair M. Kim J. Crounse G. Diskin J. DiGangi B. C. Daube B. C. Daube R. Commane R. Commane K. McKain K. McKain J. Peischl J. Peischl T. B. Ryerson T. B. Ryerson C. Thompson T. F. Hanisco D. Blake N. J. Blake E. C. Apel R. S. Hornbrook J. W. Elkins E. J. Hintsa E. J. Hintsa F. L. Moore F. L. Moore S. C. Wofsy |
author_facet | H. Guo C. M. Flynn M. J. Prather S. A. Strode S. D. Steenrod L. Emmons F. Lacey F. Lacey J.-F. Lamarque A. M. Fiore G. Correa L. T. Murray G. M. Wolfe G. M. Wolfe J. M. St. Clair J. M. St. Clair M. Kim J. Crounse G. Diskin J. DiGangi B. C. Daube B. C. Daube R. Commane R. Commane K. McKain K. McKain J. Peischl J. Peischl T. B. Ryerson T. B. Ryerson C. Thompson T. F. Hanisco D. Blake N. J. Blake E. C. Apel R. S. Hornbrook J. W. Elkins E. J. Hintsa E. J. Hintsa F. L. Moore F. L. Moore S. C. Wofsy |
author_sort | H. Guo |
collection | DOAJ |
description | <p>The NASA Atmospheric Tomography (ATom) mission built a
photochemical climatology of air parcels based on in situ measurements with
the NASA DC-8 aircraft along objectively planned profiling transects through
the middle of the Pacific and Atlantic oceans. In this paper we present and
analyze a data set of 10 s (2 km) merged and gap-filled observations of the
key reactive species driving the chemical budgets of O<span class="inline-formula"><sub>3</sub></span> and CH<span class="inline-formula"><sub>4</sub></span>
(O<span class="inline-formula"><sub>3</sub></span>, CH<span class="inline-formula"><sub>4</sub></span>, CO, H<span class="inline-formula"><sub>2</sub></span>O, HCHO, H<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>2</sub></span>, CH<span class="inline-formula"><sub>3</sub></span>OOH,
C<span class="inline-formula"><sub>2</sub></span>H<span class="inline-formula"><sub>6</sub></span>, higher alkanes, alkenes, aromatics, NO<span class="inline-formula"><sub><i>x</i></sub></span>, HNO<span class="inline-formula"><sub>3</sub></span>,
HNO<span class="inline-formula"><sub>4</sub></span>, peroxyacetyl nitrate, and other organic nitrates), consisting of
146 494 distinct air parcels from ATom deployments 1 through 4. Six models
calculated the O<span class="inline-formula"><sub>3</sub></span> and CH<span class="inline-formula"><sub>4</sub></span> photochemical tendencies from this
modeling data stream for ATom 1. We find that 80 %–90 % of the
total reactivity lies in the top 50 % of the parcels and 25 %–35 % in the top 10 %, supporting previous model-only studies that
tropospheric chemistry is driven by a fraction of all the air. Surprisingly,
the probability densities of species and reactivities averaged on a model
scale (100 km) differ only slightly from the 2 km ATom 10 s data, indicating
that much of the heterogeneity in tropospheric chemistry can be captured
with current global chemistry models. Comparing the ATom reactivities over
the tropical oceans with climatological statistics from six global chemistry
models, we find generally good agreement with the reactivity rates for
O<span class="inline-formula"><sub>3</sub></span> and CH<span class="inline-formula"><sub>4</sub></span>. Models distinctly underestimate O<span class="inline-formula"><sub>3</sub></span> production
below 2 km relative to the mid-troposphere, and this can be traced to lower
NO<span class="inline-formula"><sub><i>x</i></sub></span> levels than observed. Attaching photochemical reactivities to
measurements of chemical species allows for a richer, yet more
constrained-to-what-matters, set of metrics for model evaluation. This paper
presents a corrected version of the paper published under the same authors
and title (sans “corrected”) as <a href="https://doi.org/10.5194/acp-21-13729-2021">https://doi.org/10.5194/acp-21-13729-2021</a>.</p> |
first_indexed | 2024-04-11T01:10:58Z |
format | Article |
id | doaj.art-99b21b9190d945c2b0745c450081f986 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-04-11T01:10:58Z |
publishDate | 2023-01-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-99b21b9190d945c2b0745c450081f9862023-01-04T05:38:15ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242023-01-01239911710.5194/acp-23-99-2023Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements – correctedH. Guo0C. M. Flynn1M. J. Prather2S. A. Strode3S. D. Steenrod4L. Emmons5F. Lacey6F. Lacey7J.-F. Lamarque8A. M. Fiore9G. Correa10L. T. Murray11G. M. Wolfe12G. M. Wolfe13J. M. St. Clair14J. M. St. Clair15M. Kim16J. Crounse17G. Diskin18J. DiGangi19B. C. Daube20B. C. Daube21R. Commane22R. Commane23K. McKain24K. McKain25J. Peischl26J. Peischl27T. B. Ryerson28T. B. Ryerson29C. Thompson30T. F. Hanisco31D. Blake32N. J. Blake33E. C. Apel34R. S. Hornbrook35J. W. Elkins36E. J. Hintsa37E. J. Hintsa38F. L. Moore39F. L. Moore40S. C. Wofsy41Department of Earth System Science, University of California, Irvine, CA 92697, USADepartment of Meteorology, Stockholm University, Stockholm, 106 91, SwedenDepartment of Earth System Science, University of California, Irvine, CA 92697, USAAtmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USAAtmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USAAtmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80301, USAAtmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80301, USADepartment of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USAAtmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80301, USADepartment of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USADepartment of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USADepartment of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14611, USAAtmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USAJoint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, MD 21228, USAAtmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USAJoint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, MD 21228, USADepartment of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USAAtmospheric Composition, NASA Langley Research Center, Hampton, VA 23666, USAAtmospheric Composition, NASA Langley Research Center, Hampton, VA 23666, USAAtmospheric Composition, NASA Langley Research Center, Hampton, VA 23666, USAJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USADepartment of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USAJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USADepartment of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USACooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USAGlobal Monitoring Division, Earth System Research Laboratory, NOAA, Boulder, CO 80305, USAGlobal Monitoring Division, Earth System Research Laboratory, NOAA, Boulder, CO 80305, USAChemical Sciences Division, National Oceanic and Atmospheric Administration Earth System Research Laboratory, Boulder, CO 80305, USACooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USAChemical Sciences Division, National Oceanic and Atmospheric Administration Earth System Research Laboratory, Boulder, CO 80305, USACooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USAAtmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USADepartment of Chemistry, University of California, Irvine, CA 92697, USADepartment of Chemistry, University of California, Irvine, CA 92697, USAAtmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80301, USAAtmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80301, USAGlobal Monitoring Division, Earth System Research Laboratory, NOAA, Boulder, CO 80305, USACooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USAGlobal Monitoring Division, Earth System Research Laboratory, NOAA, Boulder, CO 80305, USACooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USAGlobal Monitoring Division, Earth System Research Laboratory, NOAA, Boulder, CO 80305, USAJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA<p>The NASA Atmospheric Tomography (ATom) mission built a photochemical climatology of air parcels based on in situ measurements with the NASA DC-8 aircraft along objectively planned profiling transects through the middle of the Pacific and Atlantic oceans. In this paper we present and analyze a data set of 10 s (2 km) merged and gap-filled observations of the key reactive species driving the chemical budgets of O<span class="inline-formula"><sub>3</sub></span> and CH<span class="inline-formula"><sub>4</sub></span> (O<span class="inline-formula"><sub>3</sub></span>, CH<span class="inline-formula"><sub>4</sub></span>, CO, H<span class="inline-formula"><sub>2</sub></span>O, HCHO, H<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>2</sub></span>, CH<span class="inline-formula"><sub>3</sub></span>OOH, C<span class="inline-formula"><sub>2</sub></span>H<span class="inline-formula"><sub>6</sub></span>, higher alkanes, alkenes, aromatics, NO<span class="inline-formula"><sub><i>x</i></sub></span>, HNO<span class="inline-formula"><sub>3</sub></span>, HNO<span class="inline-formula"><sub>4</sub></span>, peroxyacetyl nitrate, and other organic nitrates), consisting of 146 494 distinct air parcels from ATom deployments 1 through 4. Six models calculated the O<span class="inline-formula"><sub>3</sub></span> and CH<span class="inline-formula"><sub>4</sub></span> photochemical tendencies from this modeling data stream for ATom 1. We find that 80 %–90 % of the total reactivity lies in the top 50 % of the parcels and 25 %–35 % in the top 10 %, supporting previous model-only studies that tropospheric chemistry is driven by a fraction of all the air. Surprisingly, the probability densities of species and reactivities averaged on a model scale (100 km) differ only slightly from the 2 km ATom 10 s data, indicating that much of the heterogeneity in tropospheric chemistry can be captured with current global chemistry models. Comparing the ATom reactivities over the tropical oceans with climatological statistics from six global chemistry models, we find generally good agreement with the reactivity rates for O<span class="inline-formula"><sub>3</sub></span> and CH<span class="inline-formula"><sub>4</sub></span>. Models distinctly underestimate O<span class="inline-formula"><sub>3</sub></span> production below 2 km relative to the mid-troposphere, and this can be traced to lower NO<span class="inline-formula"><sub><i>x</i></sub></span> levels than observed. Attaching photochemical reactivities to measurements of chemical species allows for a richer, yet more constrained-to-what-matters, set of metrics for model evaluation. This paper presents a corrected version of the paper published under the same authors and title (sans “corrected”) as <a href="https://doi.org/10.5194/acp-21-13729-2021">https://doi.org/10.5194/acp-21-13729-2021</a>.</p>https://acp.copernicus.org/articles/23/99/2023/acp-23-99-2023.pdf |
spellingShingle | H. Guo C. M. Flynn M. J. Prather S. A. Strode S. D. Steenrod L. Emmons F. Lacey F. Lacey J.-F. Lamarque A. M. Fiore G. Correa L. T. Murray G. M. Wolfe G. M. Wolfe J. M. St. Clair J. M. St. Clair M. Kim J. Crounse G. Diskin J. DiGangi B. C. Daube B. C. Daube R. Commane R. Commane K. McKain K. McKain J. Peischl J. Peischl T. B. Ryerson T. B. Ryerson C. Thompson T. F. Hanisco D. Blake N. J. Blake E. C. Apel R. S. Hornbrook J. W. Elkins E. J. Hintsa E. J. Hintsa F. L. Moore F. L. Moore S. C. Wofsy Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements – corrected Atmospheric Chemistry and Physics |
title | Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements – corrected |
title_full | Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements – corrected |
title_fullStr | Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements – corrected |
title_full_unstemmed | Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements – corrected |
title_short | Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements – corrected |
title_sort | heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements corrected |
url | https://acp.copernicus.org/articles/23/99/2023/acp-23-99-2023.pdf |
work_keys_str_mv | AT hguo heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT cmflynn heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT mjprather heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT sastrode heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT sdsteenrod heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT lemmons heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT flacey heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT flacey heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT jflamarque heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT amfiore heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT gcorrea heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT ltmurray heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT gmwolfe heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT gmwolfe heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT jmstclair heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT jmstclair heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT mkim heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT jcrounse heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT gdiskin heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT jdigangi heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT bcdaube heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT bcdaube heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT rcommane heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT rcommane heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT kmckain heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT kmckain heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT jpeischl heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT jpeischl heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT tbryerson heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT tbryerson heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT cthompson heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT tfhanisco heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT dblake heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT njblake heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT ecapel heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT rshornbrook heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT jwelkins heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT ejhintsa heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT ejhintsa heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT flmoore heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT flmoore heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected AT scwofsy heterogeneityandchemicalreactivityoftheremotetropospheredefinedbyaircraftmeasurementscorrected |