A matheuristic algorithm for the three dimensional loading capacitated vehicle routing problem (3L-CVRP)

This paper presents a hybrid algorithm for solving the Capacitated Vehicle Routing Problem with practical three-dimensional loading constraint. This problem is known as 3L-CVRP (Three-dimensional Loading Capacitated Vehicle Routing Problem). The proposed methodology consists of two phases. The firs...

Full description

Bibliographic Details
Main Authors: Luis Miguel Escobar-Falcón, David Álvarez-Martínez, Mauricio Granada-Echeverri, John Willmer-Escobar, Rubén Augusto Romero-Lázaro
Format: Article
Language:English
Published: Universidad de Antioquia 2016-03-01
Series:Revista Facultad de Ingeniería Universidad de Antioquia
Subjects:
Online Access:https://revistas.udea.edu.co/index.php/ingenieria/article/view/21180
Description
Summary:This paper presents a hybrid algorithm for solving the Capacitated Vehicle Routing Problem with practical three-dimensional loading constraint. This problem is known as 3L-CVRP (Three-dimensional Loading Capacitated Vehicle Routing Problem). The proposed methodology consists of two phases. The first phase uses an optimization procedure based on cuts to obtain solutions for the well-known Capacitated Vehicle Routing Problem (CVRP). The second phase validates the results of the first phase of a GRASP algorithm (Greedy Randomized Adaptive Search Procedure). In particular, the GRASP approach evaluates the packing constraints for each performed route of the CVRP. The proposed hybrid algorithm uses a relaxation of the classical model of two sub-indices for the vehicle routing problem. Specifically different types of cuts are added: subtour elimination, capacity-cut constraints, and packing-cut constrains. The proposed algorithm is compared with the most efficient approaches for the 3L-CVRP on the set of benchmark instances considered in the literature. The computational results indicate that the proposed approach is able to obtain good solutions, improving some of the best-known solutions from the literature.
ISSN:0120-6230
2422-2844