Techniques for Thin-Walled Element Milling with Respect to Minimising Post-Machining Deformations

The paper examines the impact of selected machining techniques and the semi-finished product technological history on deformations of thin-walled elements made of EN AW-2024 T351 aluminium alloy after milling. The following techniques have been implemented: High Performance Cutting, High Speed Cutti...

Full description

Bibliographic Details
Main Authors: Magdalena Zawada-Michałowska, Józef Kuczmaszewski, Stanisław Legutko, Paweł Pieśko
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/13/21/4723
Description
Summary:The paper examines the impact of selected machining techniques and the semi-finished product technological history on deformations of thin-walled elements made of EN AW-2024 T351 aluminium alloy after milling. The following techniques have been implemented: High Performance Cutting, High Speed Cutting, conventional finishing (CF) and combinations of these techniques. As for the semi-finished product technological history, the rolling direction has been analysed. It has been assumed that it can be relevant in relation to the cutting tool feed direction and, in consequence, exert considerable impact on the stress, as well as deformation following machining. The interest in this issue proceeds from significant challenges faced by the industry, particularly in the aerospace sector. The analysis of results obtained has shown that milling in the direction perpendicular to the rolling direction results in larger deformations than milling in the parallel direction. Additionally, it has been revealed that applying a correctly selected machining technique makes it possible to minimise post-machining deformations of thin-walled elements.
ISSN:1996-1944