Information theoretic and machine learning approaches to quantify non-linear visual feature interaction underlying visual object recognition
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2012-07-01
|
Series: | BMC Neuroscience |
_version_ | 1818497463385849856 |
---|---|
author | Alemi-Neissi Alireza Baldassi Carlo Braunstein Alfredo Pagnani Andrea Zecchina Riccardo Zoccolan Davide |
author_facet | Alemi-Neissi Alireza Baldassi Carlo Braunstein Alfredo Pagnani Andrea Zecchina Riccardo Zoccolan Davide |
author_sort | Alemi-Neissi Alireza |
collection | DOAJ |
first_indexed | 2024-12-10T18:46:05Z |
format | Article |
id | doaj.art-99b5a312d9364487a89b011c75b8b004 |
institution | Directory Open Access Journal |
issn | 1471-2202 |
language | English |
last_indexed | 2024-12-10T18:46:05Z |
publishDate | 2012-07-01 |
publisher | BMC |
record_format | Article |
series | BMC Neuroscience |
spelling | doaj.art-99b5a312d9364487a89b011c75b8b0042022-12-22T01:37:29ZengBMCBMC Neuroscience1471-22022012-07-0113Suppl 1P210.1186/1471-2202-13-S1-P2Information theoretic and machine learning approaches to quantify non-linear visual feature interaction underlying visual object recognitionAlemi-Neissi AlirezaBaldassi CarloBraunstein AlfredoPagnani AndreaZecchina RiccardoZoccolan Davide |
spellingShingle | Alemi-Neissi Alireza Baldassi Carlo Braunstein Alfredo Pagnani Andrea Zecchina Riccardo Zoccolan Davide Information theoretic and machine learning approaches to quantify non-linear visual feature interaction underlying visual object recognition BMC Neuroscience |
title | Information theoretic and machine learning approaches to quantify non-linear visual feature interaction underlying visual object recognition |
title_full | Information theoretic and machine learning approaches to quantify non-linear visual feature interaction underlying visual object recognition |
title_fullStr | Information theoretic and machine learning approaches to quantify non-linear visual feature interaction underlying visual object recognition |
title_full_unstemmed | Information theoretic and machine learning approaches to quantify non-linear visual feature interaction underlying visual object recognition |
title_short | Information theoretic and machine learning approaches to quantify non-linear visual feature interaction underlying visual object recognition |
title_sort | information theoretic and machine learning approaches to quantify non linear visual feature interaction underlying visual object recognition |
work_keys_str_mv | AT alemineissialireza informationtheoreticandmachinelearningapproachestoquantifynonlinearvisualfeatureinteractionunderlyingvisualobjectrecognition AT baldassicarlo informationtheoreticandmachinelearningapproachestoquantifynonlinearvisualfeatureinteractionunderlyingvisualobjectrecognition AT braunsteinalfredo informationtheoreticandmachinelearningapproachestoquantifynonlinearvisualfeatureinteractionunderlyingvisualobjectrecognition AT pagnaniandrea informationtheoreticandmachinelearningapproachestoquantifynonlinearvisualfeatureinteractionunderlyingvisualobjectrecognition AT zecchinariccardo informationtheoreticandmachinelearningapproachestoquantifynonlinearvisualfeatureinteractionunderlyingvisualobjectrecognition AT zoccolandavide informationtheoreticandmachinelearningapproachestoquantifynonlinearvisualfeatureinteractionunderlyingvisualobjectrecognition |