Functionality Analysis of Derailment Containment Provisions through Full-Scale Testing—I: Collision Load and Change in the Center of Gravity

In order to reduce the large damage caused by train derailment, protective facilities of various shapes and conditions can be installed on railroad tracks. These protective facilities are referred to as derailment containment provisions (DCPs) and three different types are used worldwide. However, t...

Full description

Bibliographic Details
Main Authors: Hyun-Ung Bae, Kyoung-Ju Kim, Sang-Yun Park, Jeong-Jin Han, Jong-Chan Park, Nam-Hyoung Lim
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/21/11297
Description
Summary:In order to reduce the large damage caused by train derailment, protective facilities of various shapes and conditions can be installed on railroad tracks. These protective facilities are referred to as derailment containment provisions (DCPs) and three different types are used worldwide. However, there are no clear standards for DCP design such as installation location, size, and design load, and the performance verification of DCPs installed in the actual railway field is not sufficiently performed. In this paper, the functionality of DCP type I was analyzed experimentally. A method for estimating the collision (impact) load acting on the DCP was proposed. In addition, the containment effect of DCP type I according to the change in the vehicle’s center of gravity was identified through a comparative analysis of the dynamic motion such as roll, pitch, and yaw.
ISSN:2076-3417