Synthesis of core@shell catalysts guided by Tammann temperature

Abstract Designing high-performance thermal catalysts with stable catalytic sites is an important challenge. Conventional wisdom holds that strong metal-support interactions can benefit the catalyst performance, but there is a knowledge gap in generalizing this effect across different metals. Here,...

Full description

Bibliographic Details
Main Authors: Pei Xiong, Zhihang Xu, Tai-Sing Wu, Tong Yang, Qiong Lei, Jiangtong Li, Guangchao Li, Ming Yang, Yun-Liang Soo, Robert David Bennett, Shu Ping Lau, Shik Chi Edman Tsang, Ye Zhu, Molly Meng-Jung Li
Format: Article
Language:English
Published: Nature Portfolio 2024-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-44705-5
Description
Summary:Abstract Designing high-performance thermal catalysts with stable catalytic sites is an important challenge. Conventional wisdom holds that strong metal-support interactions can benefit the catalyst performance, but there is a knowledge gap in generalizing this effect across different metals. Here, we have successfully developed a generalizable strong metal-support interaction strategy guided by Tammann temperatures of materials, enabling functional oxide encapsulation of transition metal nanocatalysts. As an illustrative example, Co@BaAl2O4 core@shell is synthesized and tracked in real-time through in-situ microscopy and spectroscopy, revealing an unconventional strong metal-support interaction encapsulation mechanism. Notably, Co@BaAl2O4 exhibits exceptional activity relative to previously reported core@shell catalysts, displaying excellent long-term stability during high-temperature chemical reactions and overcoming the durability and reusability limitations of conventional supported catalysts. This pioneering design and widely applicable approach has been validated to guide the encapsulation of various transition metal nanoparticles for environmental tolerance functionalities, offering great potential to advance energy, catalysis, and environmental fields.
ISSN:2041-1723