Combination of Transfer Learning Methods for Kidney Glomeruli Image Classification

The rising global incidence of chronic kidney disease necessitates the development of image categorization of renal glomeruli. COVID-19 has been shown to enter the glomerulus, a tissue structure in the kidney. This study observes the differences between focal-segmental, normal and sclerotic renal gl...

Full description

Bibliographic Details
Main Authors: Hsi-Chieh Lee, Ahmad Fauzan Aqil
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/3/1040
Description
Summary:The rising global incidence of chronic kidney disease necessitates the development of image categorization of renal glomeruli. COVID-19 has been shown to enter the glomerulus, a tissue structure in the kidney. This study observes the differences between focal-segmental, normal and sclerotic renal glomerular tissue diseases. The splitting and combining of allied and multivariate models was accomplished utilizing a combined technique using existing models. In this study, model combinations are created by using a high-accuracy accuracy-based model to improve other models. This research exhibits excellent accuracy and consistent classification results on the ResNet101V2 combination using a mix of transfer learning methods, with the combined model on ResNet101V2 showing an accuracy of up to 97 percent with an F1-score of 0.97, compared to other models. However, this study discovered that the anticipated time required was higher than the model employed in general, which was mitigated by the usage of high-performance computing in this study.
ISSN:2076-3417