Numerical Analysis of the Partial Penetration High Power Laser Beam Welding of Thick Sheets at High Process Speeds

The present work is devoted to the numerical analysis of the high-power laser beam welding of thick sheets at different welding speeds. A three-dimensional transient multi-physics numerical model is developed, allowing for the prediction of the keyhole geometry and the final penetration depth. Two r...

Full description

Bibliographic Details
Main Authors: Antoni Artinov, Xiangmeng Meng, Marcel Bachmann, Michael Rethmeier
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/11/8/1319
Description
Summary:The present work is devoted to the numerical analysis of the high-power laser beam welding of thick sheets at different welding speeds. A three-dimensional transient multi-physics numerical model is developed, allowing for the prediction of the keyhole geometry and the final penetration depth. Two ray tracing algorithms are implemented and compared, namely a standard ray tracing approach and an approach using a virtual mesh refinement for a more accurate calculation of the reflection point. Both algorithms are found to provide sufficient accuracy for the prediction of the keyhole depth during laser beam welding with process speeds of up to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.5</mn></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>min</mi></semantics></math></inline-formula><sup>−1</sup>. However, with the standard algorithm, the penetration depth is underestimated by the model for a process speed of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2.5</mn></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>min</mi></semantics></math></inline-formula><sup>−1</sup> due to a trapping effect of the laser energy in the top region. In contrast, the virtually refined ray tracing approach results in high accuracy results for process speeds of both <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.5</mn></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>min</mi></semantics></math></inline-formula><sup>−1</sup> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2.5</mn></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>min</mi></semantics></math></inline-formula><sup>−1</sup>. A detailed study on the trapping effect is provided, accompanied by a benchmark including a predefined keyhole geometry with typical characteristics for the high-power laser beam welding of thick plates at high process speed, such as deep keyhole, inclined front keyhole wall, and a hump.
ISSN:2075-4701