A simple open source bioinformatic methodology for initial exploration of GPCR ligands’ agonistic/antagonistic properties

Abstract Drug development is an arduous procedure, necessitating testing the interaction of a large number of potential candidates with potential interacting (macro)molecules. Therefore, any method which could provide an initial screening of potential candidate drugs might be of interest for the acc...

Full description

Bibliographic Details
Main Authors: Athanasios A. Panagiotopoulos, Christina Papachristofi, Konstantina Kalyvianaki, Panagiotis Malamos, Panayiotis A. Theodoropoulos, George Notas, Theodora Calogeropoulou, Elias Castanas, Marilena Kampa
Format: Article
Language:English
Published: Wiley 2020-08-01
Series:Pharmacology Research & Perspectives
Subjects:
Online Access:https://doi.org/10.1002/prp2.600
_version_ 1819094410456989696
author Athanasios A. Panagiotopoulos
Christina Papachristofi
Konstantina Kalyvianaki
Panagiotis Malamos
Panayiotis A. Theodoropoulos
George Notas
Theodora Calogeropoulou
Elias Castanas
Marilena Kampa
author_facet Athanasios A. Panagiotopoulos
Christina Papachristofi
Konstantina Kalyvianaki
Panagiotis Malamos
Panayiotis A. Theodoropoulos
George Notas
Theodora Calogeropoulou
Elias Castanas
Marilena Kampa
author_sort Athanasios A. Panagiotopoulos
collection DOAJ
description Abstract Drug development is an arduous procedure, necessitating testing the interaction of a large number of potential candidates with potential interacting (macro)molecules. Therefore, any method which could provide an initial screening of potential candidate drugs might be of interest for the acceleration of the procedure, by highlighting interesting compounds, prior to in vitro and in vivo validation. In this line, we present a method which may identify potential hits, with agonistic and/or antagonistic properties on GPCR receptors, integrating the knowledge on signaling events triggered by receptor activation (GPCRs binding to Gα,β,γ proteins, and activating Gα, exchanging GDP for GTP, leading to a decreased affinity of the Gα for the GPCR). We show that, by integrating GPCR‐ligand and Gα‐GDP or ‐GTP binding in docking simulation, which correctly predicts crystallographic data, we can discriminate agonists, partial agonists, and antagonists, through a linear function, based on the ΔG (Gibbs‐free energy) of liganded‐GPCR/Gα‐GDP. We built our model using two Gαs (β2‐adrenergic and prostaglandin‐D2), four Gαi (μ‐opioid, dopamine‐D3, adenosine‐A1, rhodopsin), and one Gαo (serotonin) receptors and validated it with a series of ligands on a recently deorphanized Gαi receptor (OXER1). This approach could be a valuable tool for initial in silico validation and design of GPRC‐interacting ligands.
first_indexed 2024-12-21T23:26:58Z
format Article
id doaj.art-99d9f73eb16f43f5b9928baeb503cb61
institution Directory Open Access Journal
issn 2052-1707
language English
last_indexed 2024-12-21T23:26:58Z
publishDate 2020-08-01
publisher Wiley
record_format Article
series Pharmacology Research & Perspectives
spelling doaj.art-99d9f73eb16f43f5b9928baeb503cb612022-12-21T18:46:36ZengWileyPharmacology Research & Perspectives2052-17072020-08-0184n/an/a10.1002/prp2.600A simple open source bioinformatic methodology for initial exploration of GPCR ligands’ agonistic/antagonistic propertiesAthanasios A. Panagiotopoulos0Christina Papachristofi1Konstantina Kalyvianaki2Panagiotis Malamos3Panayiotis A. Theodoropoulos4George Notas5Theodora Calogeropoulou6Elias Castanas7Marilena Kampa8Laboratory of Experimental Endocrinology School of Medicine University of Crete Heraklion GreeceLaboratory of Experimental Endocrinology School of Medicine University of Crete Heraklion GreeceLaboratory of Experimental Endocrinology School of Medicine University of Crete Heraklion GreeceLaboratory of Experimental Endocrinology School of Medicine University of Crete Heraklion GreeceLaboratory of Biochemistry School of Medicine University of Crete Heraklion GreeceLaboratory of Experimental Endocrinology School of Medicine University of Crete Heraklion GreeceInstitute of Chemical Biology National Hellenic Research Foundation Athens GreeceLaboratory of Experimental Endocrinology School of Medicine University of Crete Heraklion GreeceLaboratory of Experimental Endocrinology School of Medicine University of Crete Heraklion GreeceAbstract Drug development is an arduous procedure, necessitating testing the interaction of a large number of potential candidates with potential interacting (macro)molecules. Therefore, any method which could provide an initial screening of potential candidate drugs might be of interest for the acceleration of the procedure, by highlighting interesting compounds, prior to in vitro and in vivo validation. In this line, we present a method which may identify potential hits, with agonistic and/or antagonistic properties on GPCR receptors, integrating the knowledge on signaling events triggered by receptor activation (GPCRs binding to Gα,β,γ proteins, and activating Gα, exchanging GDP for GTP, leading to a decreased affinity of the Gα for the GPCR). We show that, by integrating GPCR‐ligand and Gα‐GDP or ‐GTP binding in docking simulation, which correctly predicts crystallographic data, we can discriminate agonists, partial agonists, and antagonists, through a linear function, based on the ΔG (Gibbs‐free energy) of liganded‐GPCR/Gα‐GDP. We built our model using two Gαs (β2‐adrenergic and prostaglandin‐D2), four Gαi (μ‐opioid, dopamine‐D3, adenosine‐A1, rhodopsin), and one Gαo (serotonin) receptors and validated it with a series of ligands on a recently deorphanized Gαi receptor (OXER1). This approach could be a valuable tool for initial in silico validation and design of GPRC‐interacting ligands.https://doi.org/10.1002/prp2.600agonistantagonistbiological activity predictiondockingGPCRin silico
spellingShingle Athanasios A. Panagiotopoulos
Christina Papachristofi
Konstantina Kalyvianaki
Panagiotis Malamos
Panayiotis A. Theodoropoulos
George Notas
Theodora Calogeropoulou
Elias Castanas
Marilena Kampa
A simple open source bioinformatic methodology for initial exploration of GPCR ligands’ agonistic/antagonistic properties
Pharmacology Research & Perspectives
agonist
antagonist
biological activity prediction
docking
GPCR
in silico
title A simple open source bioinformatic methodology for initial exploration of GPCR ligands’ agonistic/antagonistic properties
title_full A simple open source bioinformatic methodology for initial exploration of GPCR ligands’ agonistic/antagonistic properties
title_fullStr A simple open source bioinformatic methodology for initial exploration of GPCR ligands’ agonistic/antagonistic properties
title_full_unstemmed A simple open source bioinformatic methodology for initial exploration of GPCR ligands’ agonistic/antagonistic properties
title_short A simple open source bioinformatic methodology for initial exploration of GPCR ligands’ agonistic/antagonistic properties
title_sort simple open source bioinformatic methodology for initial exploration of gpcr ligands agonistic antagonistic properties
topic agonist
antagonist
biological activity prediction
docking
GPCR
in silico
url https://doi.org/10.1002/prp2.600
work_keys_str_mv AT athanasiosapanagiotopoulos asimpleopensourcebioinformaticmethodologyforinitialexplorationofgpcrligandsagonisticantagonisticproperties
AT christinapapachristofi asimpleopensourcebioinformaticmethodologyforinitialexplorationofgpcrligandsagonisticantagonisticproperties
AT konstantinakalyvianaki asimpleopensourcebioinformaticmethodologyforinitialexplorationofgpcrligandsagonisticantagonisticproperties
AT panagiotismalamos asimpleopensourcebioinformaticmethodologyforinitialexplorationofgpcrligandsagonisticantagonisticproperties
AT panayiotisatheodoropoulos asimpleopensourcebioinformaticmethodologyforinitialexplorationofgpcrligandsagonisticantagonisticproperties
AT georgenotas asimpleopensourcebioinformaticmethodologyforinitialexplorationofgpcrligandsagonisticantagonisticproperties
AT theodoracalogeropoulou asimpleopensourcebioinformaticmethodologyforinitialexplorationofgpcrligandsagonisticantagonisticproperties
AT eliascastanas asimpleopensourcebioinformaticmethodologyforinitialexplorationofgpcrligandsagonisticantagonisticproperties
AT marilenakampa asimpleopensourcebioinformaticmethodologyforinitialexplorationofgpcrligandsagonisticantagonisticproperties
AT athanasiosapanagiotopoulos simpleopensourcebioinformaticmethodologyforinitialexplorationofgpcrligandsagonisticantagonisticproperties
AT christinapapachristofi simpleopensourcebioinformaticmethodologyforinitialexplorationofgpcrligandsagonisticantagonisticproperties
AT konstantinakalyvianaki simpleopensourcebioinformaticmethodologyforinitialexplorationofgpcrligandsagonisticantagonisticproperties
AT panagiotismalamos simpleopensourcebioinformaticmethodologyforinitialexplorationofgpcrligandsagonisticantagonisticproperties
AT panayiotisatheodoropoulos simpleopensourcebioinformaticmethodologyforinitialexplorationofgpcrligandsagonisticantagonisticproperties
AT georgenotas simpleopensourcebioinformaticmethodologyforinitialexplorationofgpcrligandsagonisticantagonisticproperties
AT theodoracalogeropoulou simpleopensourcebioinformaticmethodologyforinitialexplorationofgpcrligandsagonisticantagonisticproperties
AT eliascastanas simpleopensourcebioinformaticmethodologyforinitialexplorationofgpcrligandsagonisticantagonisticproperties
AT marilenakampa simpleopensourcebioinformaticmethodologyforinitialexplorationofgpcrligandsagonisticantagonisticproperties