Estimating <inline-formula><math display="inline"><semantics><mover accent="true"><mi>X</mi><mo stretchy="false">¯</mo></mover></semantics></math></inline-formula> Statistical Control Limits for Any Arbitrary Probability Distribution Using Re-Expressed Truncated Cumulants

Shewhart <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>X</mi><mo stretchy="false">¯</mo></mover></semantics></math></in...

Full description

Bibliographic Details
Main Authors: Paul Braden, Timothy Matis, James C. Benneyan, Binchao Chen
Format: Article
Language:English
Published: MDPI AG 2022-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/7/1044
_version_ 1827623155106054144
author Paul Braden
Timothy Matis
James C. Benneyan
Binchao Chen
author_facet Paul Braden
Timothy Matis
James C. Benneyan
Binchao Chen
author_sort Paul Braden
collection DOAJ
description Shewhart <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>X</mi><mo stretchy="false">¯</mo></mover></semantics></math></inline-formula> control charts commonly used for monitoring the mean of a process may be inaccurate or perform poorly when the subgroup size is small or the distribution of the process variable is skewed. Truncated saddlepoint distributions can increase the accuracy of estimated control limits by including higher order moments/cumulants in their approximation, yet this distribution may not exist in the lower tail, and thus the lower control limit may not exist. We introduce a novel modification in which some usually truncated higher-order cumulants are re-expressed as functions of lower-order cumulants estimated from data in a manner that ensures the existence of the truncated saddlepoint distribution over the complete domain of the random variable. The accuracy of this approach is tested in cases where the cumulants are assumed either known or estimated from sample data, and demonstrated in a healthcare application.
first_indexed 2024-03-09T11:39:25Z
format Article
id doaj.art-99dffdb09f8b454b97fc0d9149a139bd
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T11:39:25Z
publishDate 2022-03-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-99dffdb09f8b454b97fc0d9149a139bd2023-11-30T23:36:21ZengMDPI AGMathematics2227-73902022-03-01107104410.3390/math10071044Estimating <inline-formula><math display="inline"><semantics><mover accent="true"><mi>X</mi><mo stretchy="false">¯</mo></mover></semantics></math></inline-formula> Statistical Control Limits for Any Arbitrary Probability Distribution Using Re-Expressed Truncated CumulantsPaul Braden0Timothy Matis1James C. Benneyan2Binchao Chen3Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX 79409, USADepartment of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX 79409, USADepartment of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USAAmazon.com Inc., Seatle, WA 98170, USAShewhart <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>X</mi><mo stretchy="false">¯</mo></mover></semantics></math></inline-formula> control charts commonly used for monitoring the mean of a process may be inaccurate or perform poorly when the subgroup size is small or the distribution of the process variable is skewed. Truncated saddlepoint distributions can increase the accuracy of estimated control limits by including higher order moments/cumulants in their approximation, yet this distribution may not exist in the lower tail, and thus the lower control limit may not exist. We introduce a novel modification in which some usually truncated higher-order cumulants are re-expressed as functions of lower-order cumulants estimated from data in a manner that ensures the existence of the truncated saddlepoint distribution over the complete domain of the random variable. The accuracy of this approach is tested in cases where the cumulants are assumed either known or estimated from sample data, and demonstrated in a healthcare application.https://www.mdpi.com/2227-7390/10/7/1044statistical process controlcontrol chartcumulant generating functionsaddlepoint approximationskewed probability distributions
spellingShingle Paul Braden
Timothy Matis
James C. Benneyan
Binchao Chen
Estimating <inline-formula><math display="inline"><semantics><mover accent="true"><mi>X</mi><mo stretchy="false">¯</mo></mover></semantics></math></inline-formula> Statistical Control Limits for Any Arbitrary Probability Distribution Using Re-Expressed Truncated Cumulants
Mathematics
statistical process control
control chart
cumulant generating function
saddlepoint approximation
skewed probability distributions
title Estimating <inline-formula><math display="inline"><semantics><mover accent="true"><mi>X</mi><mo stretchy="false">¯</mo></mover></semantics></math></inline-formula> Statistical Control Limits for Any Arbitrary Probability Distribution Using Re-Expressed Truncated Cumulants
title_full Estimating <inline-formula><math display="inline"><semantics><mover accent="true"><mi>X</mi><mo stretchy="false">¯</mo></mover></semantics></math></inline-formula> Statistical Control Limits for Any Arbitrary Probability Distribution Using Re-Expressed Truncated Cumulants
title_fullStr Estimating <inline-formula><math display="inline"><semantics><mover accent="true"><mi>X</mi><mo stretchy="false">¯</mo></mover></semantics></math></inline-formula> Statistical Control Limits for Any Arbitrary Probability Distribution Using Re-Expressed Truncated Cumulants
title_full_unstemmed Estimating <inline-formula><math display="inline"><semantics><mover accent="true"><mi>X</mi><mo stretchy="false">¯</mo></mover></semantics></math></inline-formula> Statistical Control Limits for Any Arbitrary Probability Distribution Using Re-Expressed Truncated Cumulants
title_short Estimating <inline-formula><math display="inline"><semantics><mover accent="true"><mi>X</mi><mo stretchy="false">¯</mo></mover></semantics></math></inline-formula> Statistical Control Limits for Any Arbitrary Probability Distribution Using Re-Expressed Truncated Cumulants
title_sort estimating inline formula math display inline semantics mover accent true mi x mi mo stretchy false ¯ mo mover semantics math inline formula statistical control limits for any arbitrary probability distribution using re expressed truncated cumulants
topic statistical process control
control chart
cumulant generating function
saddlepoint approximation
skewed probability distributions
url https://www.mdpi.com/2227-7390/10/7/1044
work_keys_str_mv AT paulbraden estimatinginlineformulamathdisplayinlinesemanticsmoveraccenttruemixmimostretchyfalsemomoversemanticsmathinlineformulastatisticalcontrollimitsforanyarbitraryprobabilitydistributionusingreexpressedtruncatedcumulants
AT timothymatis estimatinginlineformulamathdisplayinlinesemanticsmoveraccenttruemixmimostretchyfalsemomoversemanticsmathinlineformulastatisticalcontrollimitsforanyarbitraryprobabilitydistributionusingreexpressedtruncatedcumulants
AT jamescbenneyan estimatinginlineformulamathdisplayinlinesemanticsmoveraccenttruemixmimostretchyfalsemomoversemanticsmathinlineformulastatisticalcontrollimitsforanyarbitraryprobabilitydistributionusingreexpressedtruncatedcumulants
AT binchaochen estimatinginlineformulamathdisplayinlinesemanticsmoveraccenttruemixmimostretchyfalsemomoversemanticsmathinlineformulastatisticalcontrollimitsforanyarbitraryprobabilitydistributionusingreexpressedtruncatedcumulants