Diamond-<i>α</i> Hardy-Type Inequalities on Time Scales

In the present article, we prove some new generalizations of dynamic inequalities of Hardy-type by utilizing diamond-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math>...

Full description

Bibliographic Details
Main Authors: Ahmed A. El-Deeb, Jan Awrejcewicz
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/14/10/2047
Description
Summary:In the present article, we prove some new generalizations of dynamic inequalities of Hardy-type by utilizing diamond-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> dynamic integrals on time scales. Furthermore, new generalizations of dynamic inequalities of Hardy-type in two variables on time scales are proved. Moreover, we present Hardy inequalities for several functions by using the diamond-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> dynamic integrals on time scales. The results are proved by using the dynamic Jensen inequality and the Fubini theorem on time scales. Our main results extend existing results of the integral and discrete Hardy-type inequalities. Symmetry plays an essential role in determining the correct methods to solve dynamic inequalities.
ISSN:2073-8994