The complete integral closure of monoids and domains II
Using geometrical methods we construct primary monoids whose complete integral closure is not completely integrally closed. Such monoids cannot be realized as multiplicative monoids of integral domains with finitely generated groups of divisibility. Complete integral closure, Primary monoids,
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sapienza Università Editrice
1995-03-01
|
Series: | Rendiconti di Matematica e delle Sue Applicazioni |
Subjects: | |
Online Access: | https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1995(2)/281-292.pdf |
_version_ | 1797820246829039616 |
---|---|
author | A. GEROLDINGER F. HALTER-KOCH G. LETTL |
author_facet | A. GEROLDINGER F. HALTER-KOCH G. LETTL |
author_sort | A. GEROLDINGER |
collection | DOAJ |
description | Using geometrical methods we construct primary monoids whose complete integral closure is not completely integrally closed. Such monoids cannot be realized as multiplicative monoids of integral domains with finitely generated groups of
divisibility.
Complete integral closure, Primary monoids, |
first_indexed | 2024-03-13T09:35:38Z |
format | Article |
id | doaj.art-99f9e2829c9c4a989f0c96e6469b4472 |
institution | Directory Open Access Journal |
issn | 1120-7183 2532-3350 |
language | English |
last_indexed | 2024-03-13T09:35:38Z |
publishDate | 1995-03-01 |
publisher | Sapienza Università Editrice |
record_format | Article |
series | Rendiconti di Matematica e delle Sue Applicazioni |
spelling | doaj.art-99f9e2829c9c4a989f0c96e6469b44722023-05-25T14:56:51ZengSapienza Università EditriceRendiconti di Matematica e delle Sue Applicazioni1120-71832532-33501995-03-01152281292The complete integral closure of monoids and domains IIA. GEROLDINGER0 F. HALTER-KOCH1G. LETTL2Institut fur Mathematik – Karl-Franzens-Universitat – Heinrichstraße 36 – A-8010 Graz – AustriaInstitut fur Mathematik – Karl-Franzens-Universitat – Heinrichstraße 36 – A-8010 Graz – AustriaInstitut fur Mathematik – Karl-Franzens-Universitat – Heinrichstraße 36 – A-8010 Graz – AustriaUsing geometrical methods we construct primary monoids whose complete integral closure is not completely integrally closed. Such monoids cannot be realized as multiplicative monoids of integral domains with finitely generated groups of divisibility. Complete integral closure, Primary monoids,https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1995(2)/281-292.pdfcomplete integral closureprimary monoids |
spellingShingle | A. GEROLDINGER F. HALTER-KOCH G. LETTL The complete integral closure of monoids and domains II Rendiconti di Matematica e delle Sue Applicazioni complete integral closure primary monoids |
title | The complete integral closure of monoids and domains II |
title_full | The complete integral closure of monoids and domains II |
title_fullStr | The complete integral closure of monoids and domains II |
title_full_unstemmed | The complete integral closure of monoids and domains II |
title_short | The complete integral closure of monoids and domains II |
title_sort | complete integral closure of monoids and domains ii |
topic | complete integral closure primary monoids |
url | https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1995(2)/281-292.pdf |
work_keys_str_mv | AT ageroldinger thecompleteintegralclosureofmonoidsanddomainsii AT fhalterkoch thecompleteintegralclosureofmonoidsanddomainsii AT glettl thecompleteintegralclosureofmonoidsanddomainsii AT ageroldinger completeintegralclosureofmonoidsanddomainsii AT fhalterkoch completeintegralclosureofmonoidsanddomainsii AT glettl completeintegralclosureofmonoidsanddomainsii |