The complete integral closure of monoids and domains II

Using geometrical methods we construct primary monoids whose complete integral closure is not completely integrally closed. Such monoids cannot be realized as multiplicative monoids of integral domains with finitely generated groups of divisibility. Complete integral closure, Primary monoids,

Bibliographic Details
Main Authors: A. GEROLDINGER, F. HALTER-KOCH, G. LETTL
Format: Article
Language:English
Published: Sapienza Università Editrice 1995-03-01
Series:Rendiconti di Matematica e delle Sue Applicazioni
Subjects:
Online Access:https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1995(2)/281-292.pdf
_version_ 1797820246829039616
author A. GEROLDINGER
F. HALTER-KOCH
G. LETTL
author_facet A. GEROLDINGER
F. HALTER-KOCH
G. LETTL
author_sort A. GEROLDINGER
collection DOAJ
description Using geometrical methods we construct primary monoids whose complete integral closure is not completely integrally closed. Such monoids cannot be realized as multiplicative monoids of integral domains with finitely generated groups of divisibility. Complete integral closure, Primary monoids,
first_indexed 2024-03-13T09:35:38Z
format Article
id doaj.art-99f9e2829c9c4a989f0c96e6469b4472
institution Directory Open Access Journal
issn 1120-7183
2532-3350
language English
last_indexed 2024-03-13T09:35:38Z
publishDate 1995-03-01
publisher Sapienza Università Editrice
record_format Article
series Rendiconti di Matematica e delle Sue Applicazioni
spelling doaj.art-99f9e2829c9c4a989f0c96e6469b44722023-05-25T14:56:51ZengSapienza Università EditriceRendiconti di Matematica e delle Sue Applicazioni1120-71832532-33501995-03-01152281292The complete integral closure of monoids and domains IIA. GEROLDINGER0 F. HALTER-KOCH1G. LETTL2Institut fur Mathematik – Karl-Franzens-Universitat – Heinrichstraße 36 – A-8010 Graz – AustriaInstitut fur Mathematik – Karl-Franzens-Universitat – Heinrichstraße 36 – A-8010 Graz – AustriaInstitut fur Mathematik – Karl-Franzens-Universitat – Heinrichstraße 36 – A-8010 Graz – AustriaUsing geometrical methods we construct primary monoids whose complete integral closure is not completely integrally closed. Such monoids cannot be realized as multiplicative monoids of integral domains with finitely generated groups of divisibility. Complete integral closure, Primary monoids,https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1995(2)/281-292.pdfcomplete integral closureprimary monoids
spellingShingle A. GEROLDINGER
F. HALTER-KOCH
G. LETTL
The complete integral closure of monoids and domains II
Rendiconti di Matematica e delle Sue Applicazioni
complete integral closure
primary monoids
title The complete integral closure of monoids and domains II
title_full The complete integral closure of monoids and domains II
title_fullStr The complete integral closure of monoids and domains II
title_full_unstemmed The complete integral closure of monoids and domains II
title_short The complete integral closure of monoids and domains II
title_sort complete integral closure of monoids and domains ii
topic complete integral closure
primary monoids
url https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1995(2)/281-292.pdf
work_keys_str_mv AT ageroldinger thecompleteintegralclosureofmonoidsanddomainsii
AT fhalterkoch thecompleteintegralclosureofmonoidsanddomainsii
AT glettl thecompleteintegralclosureofmonoidsanddomainsii
AT ageroldinger completeintegralclosureofmonoidsanddomainsii
AT fhalterkoch completeintegralclosureofmonoidsanddomainsii
AT glettl completeintegralclosureofmonoidsanddomainsii