Enhanced SSD framework for detecting defects in cigarette appearance using variational Bayesian inference under limited sample conditions

In high-speed cigarette manufacturing industries, occasional minor cosmetic cigarette defects and a scarcity of samples significantly hinder the rapid and accurate detection of defects. To tackle this challenge, we propose an enhanced single-shot multibox detector (SSD) model that uses variational B...

Full description

Bibliographic Details
Main Authors: Shichao Wu, Xianzhou Lv, Yingbo Liu, Ming Jiang, Xingxu Li, Dan Jiang, Jing Yu, Yunyu Gong, Rong Jiang
Format: Article
Language:English
Published: AIMS Press 2024-02-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2024145?viewType=HTML
Description
Summary:In high-speed cigarette manufacturing industries, occasional minor cosmetic cigarette defects and a scarcity of samples significantly hinder the rapid and accurate detection of defects. To tackle this challenge, we propose an enhanced single-shot multibox detector (SSD) model that uses variational Bayesian inference for improved detection of tiny defects given sporadic occurrences and limited samples. The enhanced SSD model incorporates a bounded intersection over union (BIoU) loss function to reduce sensitivity to minor deviations and uses exponential linear unit (ELU) and leaky rectified linear unit (ReLU) activation functions to mitigate vanishing gradients and neuron death in deep neural networks. Empirical results show that the enhanced SSD300 and SSD512 models increase the model's detection accuracy mean average precision (mAP) by up to 1.2% for small defects. Ablation studies further reveal that the model's mAP increases by 1.5%, which reduces the computational requirements by 5.92 GFLOPs. The model also shows improved inference in scenarios with limited samples, thus highlighting its effectiveness and applicability in high-speed, precision-oriented cigarette manufacturing industries.
ISSN:1551-0018