Fast one-cycle frequency estimation of a single sinusoid in noise using downsampled linear prediction model

A new solution to the problem of frequency estimation of a single sinusoid embedded in the white Gaussian noise is presented. It exploits, approximately, only one signal cycle, and is based on the well-known 2nd order autoregressive difference equation into which a downsampling is introduced. The pr...

Full description

Bibliographic Details
Main Authors: Krzysztof Duda, Tomasz P. Zieliński
Format: Article
Language:English
Published: Polish Academy of Sciences 2021-12-01
Series:Metrology and Measurement Systems
Subjects:
Online Access:https://journals.pan.pl/Content/121799/PDF/art04_final.pdf
_version_ 1818172524975882240
author Krzysztof Duda
Tomasz P. Zieliński
author_facet Krzysztof Duda
Tomasz P. Zieliński
author_sort Krzysztof Duda
collection DOAJ
description A new solution to the problem of frequency estimation of a single sinusoid embedded in the white Gaussian noise is presented. It exploits, approximately, only one signal cycle, and is based on the well-known 2nd order autoregressive difference equation into which a downsampling is introduced. The proposed method is a generalization of the linear prediction based Prony method for the case of a single undamped sinusoid. It is shown that, thanks to the proposed downsampling in the linear prediction signal model, the overall variance of the least squares solution of frequency estimation is decreased, when compared to the Prony method, and locally it is even close to the Cramér–Rao Lower Bound, which is a significant improvement. The frequency estimation variance of the proposed solution is comparable with, computationally more complex, the Matrix Pencil and the Steiglitz–McBride methods. It is shown that application of the proposed downsampling to the popular smart DFT frequency estimation method also significantly reduces the method variance and makes it even better than the least squares smart DFT. The noise immunity of the proposed solution is achieved simultaneously with the reduction of computational complexity at the cost of narrowing the range of measured frequencies, i.e. a sinusoidal signal must be sufficiently oversampled to apply the proposed downsampling in the autoregressive model. The case of 64 samples per period with downsampling up to 16, i.e. 1/4th of the cycle, is presented in detail, but other sampling scenarios, from 16 to 512 samples per period, are considered as well.
first_indexed 2024-12-11T19:13:59Z
format Article
id doaj.art-9a074f869a064847bb6b89ed5b9a821e
institution Directory Open Access Journal
issn 2300-1941
language English
last_indexed 2024-12-11T19:13:59Z
publishDate 2021-12-01
publisher Polish Academy of Sciences
record_format Article
series Metrology and Measurement Systems
spelling doaj.art-9a074f869a064847bb6b89ed5b9a821e2022-12-22T00:53:42ZengPolish Academy of SciencesMetrology and Measurement Systems2300-19412021-12-01vol. 28No 4661672https://doi.org/10.24425/mms.2021.137701Fast one-cycle frequency estimation of a single sinusoid in noise using downsampled linear prediction modelKrzysztof Duda0Tomasz P. Zieliński1AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, Department of Measurement and Electronics, al. Mickiewicza 30, 30-059 Kraków, PolandAGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Institute of Telecommunications, al. Mickiewicza 30, 30-059 Kraków, PolandA new solution to the problem of frequency estimation of a single sinusoid embedded in the white Gaussian noise is presented. It exploits, approximately, only one signal cycle, and is based on the well-known 2nd order autoregressive difference equation into which a downsampling is introduced. The proposed method is a generalization of the linear prediction based Prony method for the case of a single undamped sinusoid. It is shown that, thanks to the proposed downsampling in the linear prediction signal model, the overall variance of the least squares solution of frequency estimation is decreased, when compared to the Prony method, and locally it is even close to the Cramér–Rao Lower Bound, which is a significant improvement. The frequency estimation variance of the proposed solution is comparable with, computationally more complex, the Matrix Pencil and the Steiglitz–McBride methods. It is shown that application of the proposed downsampling to the popular smart DFT frequency estimation method also significantly reduces the method variance and makes it even better than the least squares smart DFT. The noise immunity of the proposed solution is achieved simultaneously with the reduction of computational complexity at the cost of narrowing the range of measured frequencies, i.e. a sinusoidal signal must be sufficiently oversampled to apply the proposed downsampling in the autoregressive model. The case of 64 samples per period with downsampling up to 16, i.e. 1/4th of the cycle, is presented in detail, but other sampling scenarios, from 16 to 512 samples per period, are considered as well.https://journals.pan.pl/Content/121799/PDF/art04_final.pdffrequency estimationlinear predictionprony methodsmart dft
spellingShingle Krzysztof Duda
Tomasz P. Zieliński
Fast one-cycle frequency estimation of a single sinusoid in noise using downsampled linear prediction model
Metrology and Measurement Systems
frequency estimation
linear prediction
prony method
smart dft
title Fast one-cycle frequency estimation of a single sinusoid in noise using downsampled linear prediction model
title_full Fast one-cycle frequency estimation of a single sinusoid in noise using downsampled linear prediction model
title_fullStr Fast one-cycle frequency estimation of a single sinusoid in noise using downsampled linear prediction model
title_full_unstemmed Fast one-cycle frequency estimation of a single sinusoid in noise using downsampled linear prediction model
title_short Fast one-cycle frequency estimation of a single sinusoid in noise using downsampled linear prediction model
title_sort fast one cycle frequency estimation of a single sinusoid in noise using downsampled linear prediction model
topic frequency estimation
linear prediction
prony method
smart dft
url https://journals.pan.pl/Content/121799/PDF/art04_final.pdf
work_keys_str_mv AT krzysztofduda fastonecyclefrequencyestimationofasinglesinusoidinnoiseusingdownsampledlinearpredictionmodel
AT tomaszpzielinski fastonecyclefrequencyestimationofasinglesinusoidinnoiseusingdownsampledlinearpredictionmodel