Interactions of the Fungal Community in the Complex Patho-System of Esca, a Grapevine Trunk Disease

Worldwide, Esca is a complex and devastating Grapevine Trunk Disease (GTD), characterized by inconstant foliar symptoms and internal wood degradation. A large range of fungal taxa have been reported as causal agents. We applied both culture-dependent and culture-independent methods (Illumina Technol...

Full description

Bibliographic Details
Main Authors: Laura Martín, Blanca García-García, María del Mar Alguacil
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/23/23/14726
Description
Summary:Worldwide, Esca is a complex and devastating Grapevine Trunk Disease (GTD), characterized by inconstant foliar symptoms and internal wood degradation. A large range of fungal taxa have been reported as causal agents. We applied both culture-dependent and culture-independent methods (Illumina Technology and q-PCR) to investigate this concerning disease. Woods from vines with asymptomatic leaves and vines with leaf Esca symptoms were compared. Internally, different types of wood were found, from healthy wood with black necrosis to wood with white rot. A combination of leaf and wood Esca symptoms resulted in four experimental categories. Although there was no relation with symptoms, culture-independent mycobiome composition revealed <i>Phaeomoniella chlamydospora</i>, a GTD pathogen, as the most abundant species (detected in 85.4% of wood samples, with 14.8% relative abundance). Using TaqMan q-PCR, <i>P. chlamydospora</i> DNA was detected in 60.4% of samples (far from the 18.8% of positive results in the culture-dependent approach). There was a predominance of saprotrophs, even if their abundance was not affected by Esca symptoms. Concerning pathotrophs, the white rot development within grapevines was linked to the abundance of fungi belonging to the Hymenochaetaceae family. The Botryosphaeriaceae family was identified as an indicator for expression of Esca foliar symptoms. Lastly, the Aureobasidiaceae family was found to be a potential biocontrol agent for Esca, since it was most abundant in the control asymptomatic plants.
ISSN:1661-6596
1422-0067