Automatic precursor recognition and real-time forecasting of sudden explosive volcanic eruptions at Whakaari, New Zealand

In this study, the authors investigate the predictability of sudden eruptions, motivated by the 2019 eruption at Whakaari (White Island), New Zealand. The paper proposes a machine learning approach that is able to identify eruption precursors in data streaming from a single seismic station at Whakaa...

Full description

Bibliographic Details
Main Authors: D. E. Dempsey, S. J. Cronin, S. Mei, A. W. Kempa-Liehr
Format: Article
Language:English
Published: Nature Portfolio 2020-07-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-020-17375-2
_version_ 1818692236012945408
author D. E. Dempsey
S. J. Cronin
S. Mei
A. W. Kempa-Liehr
author_facet D. E. Dempsey
S. J. Cronin
S. Mei
A. W. Kempa-Liehr
author_sort D. E. Dempsey
collection DOAJ
description In this study, the authors investigate the predictability of sudden eruptions, motivated by the 2019 eruption at Whakaari (White Island), New Zealand. The paper proposes a machine learning approach that is able to identify eruption precursors in data streaming from a single seismic station at Whakaari.
first_indexed 2024-12-17T12:54:34Z
format Article
id doaj.art-9a10873129be47a1b81e8531c5177be5
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-12-17T12:54:34Z
publishDate 2020-07-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-9a10873129be47a1b81e8531c5177be52022-12-21T21:47:30ZengNature PortfolioNature Communications2041-17232020-07-011111810.1038/s41467-020-17375-2Automatic precursor recognition and real-time forecasting of sudden explosive volcanic eruptions at Whakaari, New ZealandD. E. Dempsey0S. J. Cronin1S. Mei2A. W. Kempa-Liehr3University of AucklandUniversity of AucklandUniversity of AucklandUniversity of AucklandIn this study, the authors investigate the predictability of sudden eruptions, motivated by the 2019 eruption at Whakaari (White Island), New Zealand. The paper proposes a machine learning approach that is able to identify eruption precursors in data streaming from a single seismic station at Whakaari.https://doi.org/10.1038/s41467-020-17375-2
spellingShingle D. E. Dempsey
S. J. Cronin
S. Mei
A. W. Kempa-Liehr
Automatic precursor recognition and real-time forecasting of sudden explosive volcanic eruptions at Whakaari, New Zealand
Nature Communications
title Automatic precursor recognition and real-time forecasting of sudden explosive volcanic eruptions at Whakaari, New Zealand
title_full Automatic precursor recognition and real-time forecasting of sudden explosive volcanic eruptions at Whakaari, New Zealand
title_fullStr Automatic precursor recognition and real-time forecasting of sudden explosive volcanic eruptions at Whakaari, New Zealand
title_full_unstemmed Automatic precursor recognition and real-time forecasting of sudden explosive volcanic eruptions at Whakaari, New Zealand
title_short Automatic precursor recognition and real-time forecasting of sudden explosive volcanic eruptions at Whakaari, New Zealand
title_sort automatic precursor recognition and real time forecasting of sudden explosive volcanic eruptions at whakaari new zealand
url https://doi.org/10.1038/s41467-020-17375-2
work_keys_str_mv AT dedempsey automaticprecursorrecognitionandrealtimeforecastingofsuddenexplosivevolcaniceruptionsatwhakaarinewzealand
AT sjcronin automaticprecursorrecognitionandrealtimeforecastingofsuddenexplosivevolcaniceruptionsatwhakaarinewzealand
AT smei automaticprecursorrecognitionandrealtimeforecastingofsuddenexplosivevolcaniceruptionsatwhakaarinewzealand
AT awkempaliehr automaticprecursorrecognitionandrealtimeforecastingofsuddenexplosivevolcaniceruptionsatwhakaarinewzealand