Spectral shift function for slowly varying perturbation of periodic Schrödinger operators
In this paper we study the asymptotic expansion of the spectral shift function for the slowly varying perturbations of periodic Schrödinger operators. We give a weak and pointwise asymptotic expansions in powers of h of the derivative of the spectral shift function corresponding to the pair(P(h) = P...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universidad de La Frontera
2012-01-01
|
Series: | Cubo |
Subjects: | |
Online Access: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462012000100004 |
Summary: | In this paper we study the asymptotic expansion of the spectral shift function for the slowly varying perturbations of periodic Schrödinger operators. We give a weak and pointwise asymptotic expansions in powers of h of the derivative of the spectral shift function corresponding to the pair(P(h) = P0 + φ (hx); P0 = -Δ+ v(x)) ; where<img border=0 width=189 height=35 id="_x0000_i1030" src="http://fbpe/img/cubo/v14n1/art04-01.jpg" alt="Descripción: http://fbpe/img/cubo/v14n1/art04-01.jpg"> is a decreasing function, O (|x|-δ) for some δ> n and h is a small positive parameter. Here the potential V is real, smooth and periodic with respect to a lattice T in Rn. To prove the pointwise asymptotic expansion of the spectral shift function, we establish a limiting absorption Theorem for P(h).<br>En este artículo estudiamos la expansión asintótica de la función shift espectral para perturbaciones de variación lenta de operadores periódicos de Schrödinger. Proporcionamos una expansión débil y puntual en potencias de h de la derivada de la función shift espectral que corresponde al par (P(h) = P0 + φ (hx); P0 = -Δ+ v(x)) ; donde<img border=0 width=189 height=35 id="_x0000_i1029" src="http://fbpe/img/cubo/v14n1/art04-01.jpg" alt="Descripción: http://fbpe/img/cubo/v14n1/art04-01.jpg"> es una función decreciente, O (|x|-δ) para algún δ > n y h un parámetro positivo pequeño. Aquí el potencial V es real, suave y periódico con respecto a un retículo T in Rn. Para demostrar la expansión asintótica puntual de la función shift espectral establecemos un teorema de absorción límite para P(h). |
---|---|
ISSN: | 0716-7776 0719-0646 |