Spectral shift function for slowly varying perturbation of periodic Schrödinger operators

In this paper we study the asymptotic expansion of the spectral shift function for the slowly varying perturbations of periodic Schrödinger operators. We give a weak and pointwise asymptotic expansions in powers of h of the derivative of the spectral shift function corresponding to the pair(P(h) = P...

Full description

Bibliographic Details
Main Authors: Mouez Dimassi, Maher Zerzeri
Format: Article
Language:English
Published: Universidad de La Frontera 2012-01-01
Series:Cubo
Subjects:
Online Access:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462012000100004
_version_ 1818119496490024960
author Mouez Dimassi
Maher Zerzeri
author_facet Mouez Dimassi
Maher Zerzeri
author_sort Mouez Dimassi
collection DOAJ
description In this paper we study the asymptotic expansion of the spectral shift function for the slowly varying perturbations of periodic Schrödinger operators. We give a weak and pointwise asymptotic expansions in powers of h of the derivative of the spectral shift function corresponding to the pair(P(h) = P0 + &#966; (hx); P0 = -&#916;+ v(x)) ; where<img border=0 width=189 height=35 id="_x0000_i1030" src="http://fbpe/img/cubo/v14n1/art04-01.jpg" alt="Descripción: http://fbpe/img/cubo/v14n1/art04-01.jpg"> is a decreasing function, O (|x|-&#948;) for some &#948;> n and h is a small positive parameter. Here the potential V is real, smooth and periodic with respect to a lattice T in Rn. To prove the pointwise asymptotic expansion of the spectral shift function, we establish a limiting absorption Theorem for P(h).<br>En este artículo estudiamos la expansión asintótica de la función shift espectral para perturbaciones de variación lenta de operadores periódicos de Schrödinger. Proporcionamos una expansión débil y puntual en potencias de h de la derivada de la función shift espectral que corresponde al par (P(h) = P0 + &#966; (hx); P0 = -&#916;+ v(x)) ; donde<img border=0 width=189 height=35 id="_x0000_i1029" src="http://fbpe/img/cubo/v14n1/art04-01.jpg" alt="Descripción: http://fbpe/img/cubo/v14n1/art04-01.jpg"> es una función decreciente, O (|x|-&#948;) para algún &#948; > n y h un parámetro positivo pequeño. Aquí el potencial V es real, suave y periódico con respecto a un retículo T in Rn. Para demostrar la expansión asintótica puntual de la función shift espectral establecemos un teorema de absorción límite para P(h).
first_indexed 2024-12-11T05:11:07Z
format Article
id doaj.art-9a2fb5f9be364630bce54565955d7918
institution Directory Open Access Journal
issn 0716-7776
0719-0646
language English
last_indexed 2024-12-11T05:11:07Z
publishDate 2012-01-01
publisher Universidad de La Frontera
record_format Article
series Cubo
spelling doaj.art-9a2fb5f9be364630bce54565955d79182022-12-22T01:19:56ZengUniversidad de La FronteraCubo0716-77760719-06462012-01-011412947Spectral shift function for slowly varying perturbation of periodic Schrödinger operatorsMouez DimassiMaher ZerzeriIn this paper we study the asymptotic expansion of the spectral shift function for the slowly varying perturbations of periodic Schrödinger operators. We give a weak and pointwise asymptotic expansions in powers of h of the derivative of the spectral shift function corresponding to the pair(P(h) = P0 + &#966; (hx); P0 = -&#916;+ v(x)) ; where<img border=0 width=189 height=35 id="_x0000_i1030" src="http://fbpe/img/cubo/v14n1/art04-01.jpg" alt="Descripción: http://fbpe/img/cubo/v14n1/art04-01.jpg"> is a decreasing function, O (|x|-&#948;) for some &#948;> n and h is a small positive parameter. Here the potential V is real, smooth and periodic with respect to a lattice T in Rn. To prove the pointwise asymptotic expansion of the spectral shift function, we establish a limiting absorption Theorem for P(h).<br>En este artículo estudiamos la expansión asintótica de la función shift espectral para perturbaciones de variación lenta de operadores periódicos de Schrödinger. Proporcionamos una expansión débil y puntual en potencias de h de la derivada de la función shift espectral que corresponde al par (P(h) = P0 + &#966; (hx); P0 = -&#916;+ v(x)) ; donde<img border=0 width=189 height=35 id="_x0000_i1029" src="http://fbpe/img/cubo/v14n1/art04-01.jpg" alt="Descripción: http://fbpe/img/cubo/v14n1/art04-01.jpg"> es una función decreciente, O (|x|-&#948;) para algún &#948; > n y h un parámetro positivo pequeño. Aquí el potencial V es real, suave y periódico con respecto a un retículo T in Rn. Para demostrar la expansión asintótica puntual de la función shift espectral establecemos un teorema de absorción límite para P(h).http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462012000100004Periodic Schrödinger operatorspectral shift functionasymptotic expansionslimiting absorption theorem
spellingShingle Mouez Dimassi
Maher Zerzeri
Spectral shift function for slowly varying perturbation of periodic Schrödinger operators
Cubo
Periodic Schrödinger operator
spectral shift function
asymptotic expansions
limiting absorption theorem
title Spectral shift function for slowly varying perturbation of periodic Schrödinger operators
title_full Spectral shift function for slowly varying perturbation of periodic Schrödinger operators
title_fullStr Spectral shift function for slowly varying perturbation of periodic Schrödinger operators
title_full_unstemmed Spectral shift function for slowly varying perturbation of periodic Schrödinger operators
title_short Spectral shift function for slowly varying perturbation of periodic Schrödinger operators
title_sort spectral shift function for slowly varying perturbation of periodic schrodinger operators
topic Periodic Schrödinger operator
spectral shift function
asymptotic expansions
limiting absorption theorem
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462012000100004
work_keys_str_mv AT mouezdimassi spectralshiftfunctionforslowlyvaryingperturbationofperiodicschrodingeroperators
AT maherzerzeri spectralshiftfunctionforslowlyvaryingperturbationofperiodicschrodingeroperators