Outliers in financial time series data: Outliers, margin debt, and economic recession

Outliers in financial time series data are different from that in cross-sectional data in terms of the treatment and the detection. First, outliers in time series can be the focus of analysis itself, such as outliers in margin debt to indicate an overheating market. Second, the outlier detection in...

Full description

Bibliographic Details
Main Authors: Kangbok Lee, Yeasung Jeong, Sunghoon Joo, Yeo Song Yoon, Sumin Han, Hyeoncheol Baik
Format: Article
Language:English
Published: Elsevier 2022-12-01
Series:Machine Learning with Applications
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2666827022000950
Description
Summary:Outliers in financial time series data are different from that in cross-sectional data in terms of the treatment and the detection. First, outliers in time series can be the focus of analysis itself, such as outliers in margin debt to indicate an overheating market. Second, the outlier detection in time series should be accompanied by decomposition to exclude inherent patterns. Unfortunately, there is a lack of consensus on the best decomposition method. Thus, we propose an ensemble model that combines multiple decomposition methods. Using the approach, we found that the outliers in margin debt are strong predictors of a recession.
ISSN:2666-8270