Synthesis and formation process of Al2CuHx: A new class of interstitial aluminum-based alloy hydride

Aluminum-based alloy hydride Al2CuHx (x ∼ 1) is synthesized by hydrogenating Al2Cu alloy using high-temperature and high-pressure hydrogen atmosphere. Al8Cu square antiprisms in Al2Cu twist around the c axis of a tetragonal unit cell by hydrogenation. The twist enlarges the interstitial spaces for a...

Full description

Bibliographic Details
Main Authors: Hiroyuki Saitoh, Shigeyuki Takagi, Naruki Endo, Akihiko Machida, Katsutoshi Aoki, Shin-ichi Orimo, Yoshinori Katayama
Format: Article
Language:English
Published: AIP Publishing LLC 2013-09-01
Series:APL Materials
Online Access:http://link.aip.org/link/doi/10.1063/1.4821632
Description
Summary:Aluminum-based alloy hydride Al2CuHx (x ∼ 1) is synthesized by hydrogenating Al2Cu alloy using high-temperature and high-pressure hydrogen atmosphere. Al8Cu square antiprisms in Al2Cu twist around the c axis of a tetragonal unit cell by hydrogenation. The twist enlarges the interstitial spaces for accommodating hydrogen atoms which align linearly parallel to the c axis in Al2CuHx. Thermodynamic stability of Al2CuHx results from the balance of stabilization by H 1s and Al 3sp hybridization and destabilization owing to the Fermi-level lifting upon hydrogenation. The crystal and electronic structures of Al2CuHx illustrate the formation of an interstitial hydride of aluminum-based alloy.
ISSN:2166-532X