Toll-like receptor-2 mediates diet and/or pathogen associated atherosclerosis: proteomic findings.

Accumulating evidence implicates a fundamental link between the immune system and atherosclerosis. Toll-like receptors are principal sensors of the innate immune system. Here we report an assessment of the role of the TLR2 pathway in atherosclerosis associated with a high-fat diet and/or bacteria in...

Full description

Bibliographic Details
Main Authors: Monika Madan, Salomon Amar
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2008-09-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC2527517?pdf=render
_version_ 1819092195285663744
author Monika Madan
Salomon Amar
author_facet Monika Madan
Salomon Amar
author_sort Monika Madan
collection DOAJ
description Accumulating evidence implicates a fundamental link between the immune system and atherosclerosis. Toll-like receptors are principal sensors of the innate immune system. Here we report an assessment of the role of the TLR2 pathway in atherosclerosis associated with a high-fat diet and/or bacteria in ApoE(+/-) mice.To explore the role of TLR2 in inflammation- and infection-associated atherosclerosis, 10 week-old ApoE(+/-)-TLR2(+/+), ApoE(+/-)-TLR2(+/-) and ApoE(+/-)-TLR2(-/-) mice were fed either a high fat diet or a regular chow diet. All mice were inoculated intravenously, once per week for 24 consecutive weeks, with 50 microl live Porphyromonas gingivalis (P.g) (10(7) CFU) or vehicle (normal saline). Animals were euthanized 24 weeks after the first inoculation. ApoE(+/-)-TLR2(+/+) mice showed a significant increase in atheromatous lesions in proximal aorta and aortic tree compared to ApoE(+/-)-TLR2(+/-) and ApoE(+/-)-TLR2(-/-) mice for all diet conditions. They also displayed profound changes in plaque composition, as evidenced by increased macrophage infiltration and apoptosis, increased lipid content, and decreased smooth muscle cell mass, all reflecting an unstable plaque phenotype. SAA levels from ApoE(+/-)-TLR2(+/+) mice were significantly higher than from ApoE(+/-)-TLR2(+/-) and ApoE(+/-)-TLR2(-/-) mice. Serum cytokine analysis revealed increased levels of pro-inflammatory cytokines in ApoE(+/-)-TLR2(+/+) mice compared to ApoE(+/-)-TLR2(+/-) and TLR2(-/-) mice, irrespective of diet or bacterial challenge. ApoE(+/-)-TLR2(+/+) mice injected weekly for 24 weeks with FSL-1 (a TLR2 agonist) also demonstrated significant increases in atherosclerotic lesions, SAA and serum cytokine levels compared to ApoE(+/-)-TLR2(-/-) mice under same treatment condition. Finally, mass-spectrometry (MALDI-TOF-MS) of aortic samples analyzed by 2-dimensional gel electrophoresis differential display, identified 6 proteins upregulated greater than 2-fold in ApoE(+/-)-TLR2(+/+) mice fed the high fat diet and inoculated with P.g compared to any other group.Genetic deficiency of TLR2 reduces diet- and/or pathogen-associated atherosclerosis in ApoE(+/-) mice, along with differences in plaque composition suggesting greater structural stability while TLR-2 ligand-specific activation triggers atherosclerosis. The present data offers new insights into the pathophysiological pathways involved in atherosclerosis and paves the way for new pharmacological interventions aimed at reducing atherosclerosis.
first_indexed 2024-12-21T22:51:45Z
format Article
id doaj.art-9a4381650c8342fd93ebcea816f7704d
institution Directory Open Access Journal
issn 1932-6203
language English
last_indexed 2024-12-21T22:51:45Z
publishDate 2008-09-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj.art-9a4381650c8342fd93ebcea816f7704d2022-12-21T18:47:34ZengPublic Library of Science (PLoS)PLoS ONE1932-62032008-09-0139e320410.1371/journal.pone.0003204Toll-like receptor-2 mediates diet and/or pathogen associated atherosclerosis: proteomic findings.Monika MadanSalomon AmarAccumulating evidence implicates a fundamental link between the immune system and atherosclerosis. Toll-like receptors are principal sensors of the innate immune system. Here we report an assessment of the role of the TLR2 pathway in atherosclerosis associated with a high-fat diet and/or bacteria in ApoE(+/-) mice.To explore the role of TLR2 in inflammation- and infection-associated atherosclerosis, 10 week-old ApoE(+/-)-TLR2(+/+), ApoE(+/-)-TLR2(+/-) and ApoE(+/-)-TLR2(-/-) mice were fed either a high fat diet or a regular chow diet. All mice were inoculated intravenously, once per week for 24 consecutive weeks, with 50 microl live Porphyromonas gingivalis (P.g) (10(7) CFU) or vehicle (normal saline). Animals were euthanized 24 weeks after the first inoculation. ApoE(+/-)-TLR2(+/+) mice showed a significant increase in atheromatous lesions in proximal aorta and aortic tree compared to ApoE(+/-)-TLR2(+/-) and ApoE(+/-)-TLR2(-/-) mice for all diet conditions. They also displayed profound changes in plaque composition, as evidenced by increased macrophage infiltration and apoptosis, increased lipid content, and decreased smooth muscle cell mass, all reflecting an unstable plaque phenotype. SAA levels from ApoE(+/-)-TLR2(+/+) mice were significantly higher than from ApoE(+/-)-TLR2(+/-) and ApoE(+/-)-TLR2(-/-) mice. Serum cytokine analysis revealed increased levels of pro-inflammatory cytokines in ApoE(+/-)-TLR2(+/+) mice compared to ApoE(+/-)-TLR2(+/-) and TLR2(-/-) mice, irrespective of diet or bacterial challenge. ApoE(+/-)-TLR2(+/+) mice injected weekly for 24 weeks with FSL-1 (a TLR2 agonist) also demonstrated significant increases in atherosclerotic lesions, SAA and serum cytokine levels compared to ApoE(+/-)-TLR2(-/-) mice under same treatment condition. Finally, mass-spectrometry (MALDI-TOF-MS) of aortic samples analyzed by 2-dimensional gel electrophoresis differential display, identified 6 proteins upregulated greater than 2-fold in ApoE(+/-)-TLR2(+/+) mice fed the high fat diet and inoculated with P.g compared to any other group.Genetic deficiency of TLR2 reduces diet- and/or pathogen-associated atherosclerosis in ApoE(+/-) mice, along with differences in plaque composition suggesting greater structural stability while TLR-2 ligand-specific activation triggers atherosclerosis. The present data offers new insights into the pathophysiological pathways involved in atherosclerosis and paves the way for new pharmacological interventions aimed at reducing atherosclerosis.http://europepmc.org/articles/PMC2527517?pdf=render
spellingShingle Monika Madan
Salomon Amar
Toll-like receptor-2 mediates diet and/or pathogen associated atherosclerosis: proteomic findings.
PLoS ONE
title Toll-like receptor-2 mediates diet and/or pathogen associated atherosclerosis: proteomic findings.
title_full Toll-like receptor-2 mediates diet and/or pathogen associated atherosclerosis: proteomic findings.
title_fullStr Toll-like receptor-2 mediates diet and/or pathogen associated atherosclerosis: proteomic findings.
title_full_unstemmed Toll-like receptor-2 mediates diet and/or pathogen associated atherosclerosis: proteomic findings.
title_short Toll-like receptor-2 mediates diet and/or pathogen associated atherosclerosis: proteomic findings.
title_sort toll like receptor 2 mediates diet and or pathogen associated atherosclerosis proteomic findings
url http://europepmc.org/articles/PMC2527517?pdf=render
work_keys_str_mv AT monikamadan tolllikereceptor2mediatesdietandorpathogenassociatedatherosclerosisproteomicfindings
AT salomonamar tolllikereceptor2mediatesdietandorpathogenassociatedatherosclerosisproteomicfindings