Summary: | In this paper we present a proof system that operates on graphs instead of
formulas. Starting from the well-known relationship between formulas and
cographs, we drop the cograph-conditions and look at arbitrary undirected)
graphs. This means that we lose the tree structure of the formulas
corresponding to the cographs, and we can no longer use standard proof
theoretical methods that depend on that tree structure. In order to overcome
this difficulty, we use a modular decomposition of graphs and some techniques
from deep inference where inference rules do not rely on the main connective of
a formula. For our proof system we show the admissibility of cut and a
generalisation of the splitting property. Finally, we show that our system is a
conservative extension of multiplicative linear logic with mix, and we argue
that our graphs form a notion of generalised connective.
|