Heart and Breathing Rate Variations as Biomarkers for Anxiety Detection

With advances in portable and wearable devices, it should be possible to analyze and interpret the collected biosignals from those devices to tailor a psychological intervention to help patients. This study focuses on detecting anxiety by using a portable device that collects electrocardiogram (ECG)...

Full description

Bibliographic Details
Main Authors: Florian Ritsert, Mohamed Elgendi, Valeria Galli, Carlo Menon
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Bioengineering
Subjects:
Online Access:https://www.mdpi.com/2306-5354/9/11/711
_version_ 1797465859337224192
author Florian Ritsert
Mohamed Elgendi
Valeria Galli
Carlo Menon
author_facet Florian Ritsert
Mohamed Elgendi
Valeria Galli
Carlo Menon
author_sort Florian Ritsert
collection DOAJ
description With advances in portable and wearable devices, it should be possible to analyze and interpret the collected biosignals from those devices to tailor a psychological intervention to help patients. This study focuses on detecting anxiety by using a portable device that collects electrocardiogram (ECG) and respiration (RSP) signals. The feature extraction focused on heart-rate variability (HRV) and breathing-rate variability (BRV). We show that a significant change in these signals occurred between the non-anxiety-induced and anxiety-induced states. The HRV biomarkers were the mean heart rate (MHR; <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>p</mi><mo>¯</mo></mover></semantics></math></inline-formula> = 0.04), the standard deviation of the heart rate (SD; <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>p</mi><mo>¯</mo></mover></semantics></math></inline-formula> = 0.01), and the standard deviation of NN intervals (SDNN; <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>p</mi><mo>¯</mo></mover></semantics></math></inline-formula> = 0.03) for ECG signals, and the mean breath rate (MBR; <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>p</mi><mo>¯</mo></mover></semantics></math></inline-formula> = 0.002), the standard deviation of the breath rate (SD; <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>p</mi><mo>¯</mo></mover></semantics></math></inline-formula> < 0.0001), the root mean square of successive differences (RMSSD; <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>p</mi><mo>¯</mo></mover></semantics></math></inline-formula> < 0.0001) and SDNN (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>p</mi><mo>¯</mo></mover></semantics></math></inline-formula> < 0.0001) for RSP signals. This work extends the existing literature on the relationship between stress and HRV/BRV by being the first to introduce a transitional phase. It contributes to systematically processing mental and emotional impulse data in humans measured via ECG and RSP signals. On the basis of these identified biomarkers, artificial-intelligence or machine-learning algorithms, and rule-based classification, the automated biosignal-based psychological assessment of patients could be within reach. This creates a broad basis for detecting and evaluating psychological abnormalities in individuals upon which future psychological treatment methods could be built using portable and wearable devices.
first_indexed 2024-03-09T18:28:32Z
format Article
id doaj.art-9a5fd9a9f21949b2836fd87af7106883
institution Directory Open Access Journal
issn 2306-5354
language English
last_indexed 2024-03-09T18:28:32Z
publishDate 2022-11-01
publisher MDPI AG
record_format Article
series Bioengineering
spelling doaj.art-9a5fd9a9f21949b2836fd87af71068832023-11-24T07:44:51ZengMDPI AGBioengineering2306-53542022-11-0191171110.3390/bioengineering9110711Heart and Breathing Rate Variations as Biomarkers for Anxiety DetectionFlorian Ritsert0Mohamed Elgendi1Valeria Galli2Carlo Menon3Biomedical and Mobile Health Technology Lab, ETH Zurich, 8008 Zurich, SwitzerlandBiomedical and Mobile Health Technology Lab, ETH Zurich, 8008 Zurich, SwitzerlandBiomedical and Mobile Health Technology Lab, ETH Zurich, 8008 Zurich, SwitzerlandBiomedical and Mobile Health Technology Lab, ETH Zurich, 8008 Zurich, SwitzerlandWith advances in portable and wearable devices, it should be possible to analyze and interpret the collected biosignals from those devices to tailor a psychological intervention to help patients. This study focuses on detecting anxiety by using a portable device that collects electrocardiogram (ECG) and respiration (RSP) signals. The feature extraction focused on heart-rate variability (HRV) and breathing-rate variability (BRV). We show that a significant change in these signals occurred between the non-anxiety-induced and anxiety-induced states. The HRV biomarkers were the mean heart rate (MHR; <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>p</mi><mo>¯</mo></mover></semantics></math></inline-formula> = 0.04), the standard deviation of the heart rate (SD; <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>p</mi><mo>¯</mo></mover></semantics></math></inline-formula> = 0.01), and the standard deviation of NN intervals (SDNN; <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>p</mi><mo>¯</mo></mover></semantics></math></inline-formula> = 0.03) for ECG signals, and the mean breath rate (MBR; <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>p</mi><mo>¯</mo></mover></semantics></math></inline-formula> = 0.002), the standard deviation of the breath rate (SD; <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>p</mi><mo>¯</mo></mover></semantics></math></inline-formula> < 0.0001), the root mean square of successive differences (RMSSD; <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>p</mi><mo>¯</mo></mover></semantics></math></inline-formula> < 0.0001) and SDNN (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>p</mi><mo>¯</mo></mover></semantics></math></inline-formula> < 0.0001) for RSP signals. This work extends the existing literature on the relationship between stress and HRV/BRV by being the first to introduce a transitional phase. It contributes to systematically processing mental and emotional impulse data in humans measured via ECG and RSP signals. On the basis of these identified biomarkers, artificial-intelligence or machine-learning algorithms, and rule-based classification, the automated biosignal-based psychological assessment of patients could be within reach. This creates a broad basis for detecting and evaluating psychological abnormalities in individuals upon which future psychological treatment methods could be built using portable and wearable devices.https://www.mdpi.com/2306-5354/9/11/711digital healthwearable technologyheart rate variabilityrespiration rate variabilitybreathing rate variabilityanxiety assessment
spellingShingle Florian Ritsert
Mohamed Elgendi
Valeria Galli
Carlo Menon
Heart and Breathing Rate Variations as Biomarkers for Anxiety Detection
Bioengineering
digital health
wearable technology
heart rate variability
respiration rate variability
breathing rate variability
anxiety assessment
title Heart and Breathing Rate Variations as Biomarkers for Anxiety Detection
title_full Heart and Breathing Rate Variations as Biomarkers for Anxiety Detection
title_fullStr Heart and Breathing Rate Variations as Biomarkers for Anxiety Detection
title_full_unstemmed Heart and Breathing Rate Variations as Biomarkers for Anxiety Detection
title_short Heart and Breathing Rate Variations as Biomarkers for Anxiety Detection
title_sort heart and breathing rate variations as biomarkers for anxiety detection
topic digital health
wearable technology
heart rate variability
respiration rate variability
breathing rate variability
anxiety assessment
url https://www.mdpi.com/2306-5354/9/11/711
work_keys_str_mv AT florianritsert heartandbreathingratevariationsasbiomarkersforanxietydetection
AT mohamedelgendi heartandbreathingratevariationsasbiomarkersforanxietydetection
AT valeriagalli heartandbreathingratevariationsasbiomarkersforanxietydetection
AT carlomenon heartandbreathingratevariationsasbiomarkersforanxietydetection