A new technique for reducing self heating effect in MOSFETs with extended source and drain
Metal Oxide Semiconductor Field Effect Transistor (MOSFET) plays a key role in electronic industry in recent years. Among MOSFETs, double gate (DG) transistor is an important device. During last decade, many efforts have been accomplished to improve the device properties. A new structure of the doub...
Main Authors: | , |
---|---|
Format: | Article |
Language: | fas |
Published: |
Semnan University
2018-06-01
|
Series: | مجله مدل سازی در مهندسی |
Subjects: | |
Online Access: | https://modelling.semnan.ac.ir/article_3045_9f1f84ac17e2f0fd9c3ec39d7c3b31a8.pdf |
_version_ | 1797296620422823936 |
---|---|
author | Meysam Zareiee Mahsa Mehrad |
author_facet | Meysam Zareiee Mahsa Mehrad |
author_sort | Meysam Zareiee |
collection | DOAJ |
description | Metal Oxide Semiconductor Field Effect Transistor (MOSFET) plays a key role in electronic industry in recent years. Among MOSFETs, double gate (DG) transistor is an important device. During last decade, many efforts have been accomplished to improve the device properties. A new structure of the double gate (DG) transistor on SOI technology is proposed in this paper. In SOI technology, buried oxide as insulating layer has lower thermal conductivity than silicon and makes some problems for nano-scale MOSFETs. Incorporating a silicon window under the channel region and two spacers reduces maximum temperature of device. The simulation with ATLAS simulator shows that by optimizing the length and thickness of the silicon window, an acceptable device temperature would be achieved and makes the double gate structure more reliable for nano-scale applications at high temperature. Drain current, lattice temperature, electron mobility, hole density, threshold voltage, subthreshold swing and off current are improved in the new structure. |
first_indexed | 2024-03-07T22:07:24Z |
format | Article |
id | doaj.art-9a6c466ca076435288d108d00de6cca7 |
institution | Directory Open Access Journal |
issn | 2008-4854 2783-2538 |
language | fas |
last_indexed | 2024-03-07T22:07:24Z |
publishDate | 2018-06-01 |
publisher | Semnan University |
record_format | Article |
series | مجله مدل سازی در مهندسی |
spelling | doaj.art-9a6c466ca076435288d108d00de6cca72024-02-23T19:05:22ZfasSemnan Universityمجله مدل سازی در مهندسی2008-48542783-25382018-06-01165314915510.22075/jme.2017.5970.3045A new technique for reducing self heating effect in MOSFETs with extended source and drainMeysam Zareiee0Mahsa Mehrad1دانشگاه دامغاندانشگاه دامغانMetal Oxide Semiconductor Field Effect Transistor (MOSFET) plays a key role in electronic industry in recent years. Among MOSFETs, double gate (DG) transistor is an important device. During last decade, many efforts have been accomplished to improve the device properties. A new structure of the double gate (DG) transistor on SOI technology is proposed in this paper. In SOI technology, buried oxide as insulating layer has lower thermal conductivity than silicon and makes some problems for nano-scale MOSFETs. Incorporating a silicon window under the channel region and two spacers reduces maximum temperature of device. The simulation with ATLAS simulator shows that by optimizing the length and thickness of the silicon window, an acceptable device temperature would be achieved and makes the double gate structure more reliable for nano-scale applications at high temperature. Drain current, lattice temperature, electron mobility, hole density, threshold voltage, subthreshold swing and off current are improved in the new structure.https://modelling.semnan.ac.ir/article_3045_9f1f84ac17e2f0fd9c3ec39d7c3b31a8.pdfdouble gate mosfetsilicon on insulatorburied oxidemaximum temprature |
spellingShingle | Meysam Zareiee Mahsa Mehrad A new technique for reducing self heating effect in MOSFETs with extended source and drain مجله مدل سازی در مهندسی double gate mosfet silicon on insulator buried oxide maximum temprature |
title | A new technique for reducing self heating effect in MOSFETs with extended source and drain |
title_full | A new technique for reducing self heating effect in MOSFETs with extended source and drain |
title_fullStr | A new technique for reducing self heating effect in MOSFETs with extended source and drain |
title_full_unstemmed | A new technique for reducing self heating effect in MOSFETs with extended source and drain |
title_short | A new technique for reducing self heating effect in MOSFETs with extended source and drain |
title_sort | new technique for reducing self heating effect in mosfets with extended source and drain |
topic | double gate mosfet silicon on insulator buried oxide maximum temprature |
url | https://modelling.semnan.ac.ir/article_3045_9f1f84ac17e2f0fd9c3ec39d7c3b31a8.pdf |
work_keys_str_mv | AT meysamzareiee anewtechniqueforreducingselfheatingeffectinmosfetswithextendedsourceanddrain AT mahsamehrad anewtechniqueforreducingselfheatingeffectinmosfetswithextendedsourceanddrain AT meysamzareiee newtechniqueforreducingselfheatingeffectinmosfetswithextendedsourceanddrain AT mahsamehrad newtechniqueforreducingselfheatingeffectinmosfetswithextendedsourceanddrain |