Remote sensing of cloud sides of deep convection: towards a three-dimensional retrieval of cloud particle size profiles
The cloud scanner sensor is a central part of a recently proposed satellite remote sensing concept – the three-dimensional (3-D) cloud and aerosol interaction mission (CLAIM-3D) combining measurements of aerosol characteristics in the vicinity of clouds and profiles of cloud microphysical characteri...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2008-08-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | http://www.atmos-chem-phys.net/8/4741/2008/acp-8-4741-2008.pdf |
_version_ | 1818491091145457664 |
---|---|
author | T. Zinner A. Marshak S. Lang J. V. Martins B. Mayer |
author_facet | T. Zinner A. Marshak S. Lang J. V. Martins B. Mayer |
author_sort | T. Zinner |
collection | DOAJ |
description | The cloud scanner sensor is a central part of a recently proposed satellite remote sensing concept – the three-dimensional (3-D) cloud and aerosol interaction mission (CLAIM-3D) combining measurements of aerosol characteristics in the vicinity of clouds and profiles of cloud microphysical characteristics. Such a set of collocated measurements will allow new insights in the complex field of cloud-aerosol interactions affecting directly the development of clouds and precipitation, especially in convection. The cloud scanner measures radiance reflected or emitted by cloud sides at several wavelengths to derive a profile of cloud particle size and thermodynamic phase. For the retrieval of effective size a Bayesian approach was adopted and introduced in a preceding paper. <br><br> In this paper the potential of the approach, which has to account for the complex three-dimensional nature of cloud geometry and radiative transfer, is tested in realistic cloud observing situations. In a fully simulated environment realistic cloud resolving modelling provides complex 3-D structures of ice, water, and mixed phase clouds, from the early stage of convective development to mature deep convection. A three-dimensional Monte Carlo radiative transfer is used to realistically simulate the aspired observations. <br><br> A large number of cloud data sets and related simulated observations provide the database for an experimental Bayesian retrieval. An independent simulation of an additional cloud field serves as a synthetic test bed for the demonstration of the capabilities of the developed retrieval techniques. For this test case only a minimal overall bias in the order of 1% as well as pixel-based uncertainties in the order of 1 μm for droplets and 8 μm for ice particles were found for measurements at a high spatial resolution of 250 m. |
first_indexed | 2024-12-10T17:25:40Z |
format | Article |
id | doaj.art-9a71bc46c19c4219a66859c89d729307 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-12-10T17:25:40Z |
publishDate | 2008-08-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-9a71bc46c19c4219a66859c89d7293072022-12-22T01:39:51ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242008-08-0181647414757Remote sensing of cloud sides of deep convection: towards a three-dimensional retrieval of cloud particle size profilesT. ZinnerA. MarshakS. LangJ. V. MartinsB. MayerThe cloud scanner sensor is a central part of a recently proposed satellite remote sensing concept – the three-dimensional (3-D) cloud and aerosol interaction mission (CLAIM-3D) combining measurements of aerosol characteristics in the vicinity of clouds and profiles of cloud microphysical characteristics. Such a set of collocated measurements will allow new insights in the complex field of cloud-aerosol interactions affecting directly the development of clouds and precipitation, especially in convection. The cloud scanner measures radiance reflected or emitted by cloud sides at several wavelengths to derive a profile of cloud particle size and thermodynamic phase. For the retrieval of effective size a Bayesian approach was adopted and introduced in a preceding paper. <br><br> In this paper the potential of the approach, which has to account for the complex three-dimensional nature of cloud geometry and radiative transfer, is tested in realistic cloud observing situations. In a fully simulated environment realistic cloud resolving modelling provides complex 3-D structures of ice, water, and mixed phase clouds, from the early stage of convective development to mature deep convection. A three-dimensional Monte Carlo radiative transfer is used to realistically simulate the aspired observations. <br><br> A large number of cloud data sets and related simulated observations provide the database for an experimental Bayesian retrieval. An independent simulation of an additional cloud field serves as a synthetic test bed for the demonstration of the capabilities of the developed retrieval techniques. For this test case only a minimal overall bias in the order of 1% as well as pixel-based uncertainties in the order of 1 μm for droplets and 8 μm for ice particles were found for measurements at a high spatial resolution of 250 m.http://www.atmos-chem-phys.net/8/4741/2008/acp-8-4741-2008.pdf |
spellingShingle | T. Zinner A. Marshak S. Lang J. V. Martins B. Mayer Remote sensing of cloud sides of deep convection: towards a three-dimensional retrieval of cloud particle size profiles Atmospheric Chemistry and Physics |
title | Remote sensing of cloud sides of deep convection: towards a three-dimensional retrieval of cloud particle size profiles |
title_full | Remote sensing of cloud sides of deep convection: towards a three-dimensional retrieval of cloud particle size profiles |
title_fullStr | Remote sensing of cloud sides of deep convection: towards a three-dimensional retrieval of cloud particle size profiles |
title_full_unstemmed | Remote sensing of cloud sides of deep convection: towards a three-dimensional retrieval of cloud particle size profiles |
title_short | Remote sensing of cloud sides of deep convection: towards a three-dimensional retrieval of cloud particle size profiles |
title_sort | remote sensing of cloud sides of deep convection towards a three dimensional retrieval of cloud particle size profiles |
url | http://www.atmos-chem-phys.net/8/4741/2008/acp-8-4741-2008.pdf |
work_keys_str_mv | AT tzinner remotesensingofcloudsidesofdeepconvectiontowardsathreedimensionalretrievalofcloudparticlesizeprofiles AT amarshak remotesensingofcloudsidesofdeepconvectiontowardsathreedimensionalretrievalofcloudparticlesizeprofiles AT slang remotesensingofcloudsidesofdeepconvectiontowardsathreedimensionalretrievalofcloudparticlesizeprofiles AT jvmartins remotesensingofcloudsidesofdeepconvectiontowardsathreedimensionalretrievalofcloudparticlesizeprofiles AT bmayer remotesensingofcloudsidesofdeepconvectiontowardsathreedimensionalretrievalofcloudparticlesizeprofiles |