The Bedrosian Identity for Lp Function and the Hardy Space on Tube

In this paper, we are devoted to establishing several necessary and su cient conditions for <em>f</em>∈<em>L</em><sup><em>p</em></sup>(R<sup><em>n</em></sup>); <em>g</em>∈<em>L</em><sup><em>q&...

Full description

Bibliographic Details
Main Authors: Zhihong Wen, Guantie Deng
Format: Article
Language:English
Published: AIMS Press 2016-04-01
Series:AIMS Mathematics
Subjects:
Online Access:http://www.aimspress.com/article/10.3934/Math.2016.1.9/fulltext.html
_version_ 1818343855781576704
author Zhihong Wen
Guantie Deng
author_facet Zhihong Wen
Guantie Deng
author_sort Zhihong Wen
collection DOAJ
description In this paper, we are devoted to establishing several necessary and su cient conditions for <em>f</em>∈<em>L</em><sup><em>p</em></sup>(R<sup><em>n</em></sup>); <em>g</em>∈<em>L</em><sup><em>q</em></sup>(R<sup><em>n</em></sup>) with (1/<em>p</em>) +(1/<em>q</em>)≤1 to satisfy the Bedrosian identity <em>H</em>(<em>fg</em>) =<em>fHg</em>, where <em>H</em> denotes the n-dimensional Hilbert transform. In addition, we also show that the distribution <em>f</em>∈<em>DL</em><sup><em>p</em></sup>' (R<sup><em>n</em></sup>) can be represented by functions in the Hardy space on tube.
first_indexed 2024-12-13T16:37:13Z
format Article
id doaj.art-9a858c9efb2b4b99b98345ffd8de5080
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-12-13T16:37:13Z
publishDate 2016-04-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-9a858c9efb2b4b99b98345ffd8de50802022-12-21T23:38:22ZengAIMS PressAIMS Mathematics2473-69882016-04-011192310.3934/Math.2016.1.9The Bedrosian Identity for Lp Function and the Hardy Space on TubeZhihong Wen0Guantie Deng1School of Mathematical Sciences, Key Laboratory of Mathematics and Complex Systems ofMinistry of Education, Beijing Normal University, 100875, Beijing, ChinaSchool of Mathematical Sciences, Key Laboratory of Mathematics and Complex Systems ofMinistry of Education, Beijing Normal University, 100875, Beijing, ChinaIn this paper, we are devoted to establishing several necessary and su cient conditions for <em>f</em>∈<em>L</em><sup><em>p</em></sup>(R<sup><em>n</em></sup>); <em>g</em>∈<em>L</em><sup><em>q</em></sup>(R<sup><em>n</em></sup>) with (1/<em>p</em>) +(1/<em>q</em>)≤1 to satisfy the Bedrosian identity <em>H</em>(<em>fg</em>) =<em>fHg</em>, where <em>H</em> denotes the n-dimensional Hilbert transform. In addition, we also show that the distribution <em>f</em>∈<em>DL</em><sup><em>p</em></sup>' (R<sup><em>n</em></sup>) can be represented by functions in the Hardy space on tube.http://www.aimspress.com/article/10.3934/Math.2016.1.9/fulltext.htmlBedrosian identity|Fourier transform|Hilbert transform|Distribution
spellingShingle Zhihong Wen
Guantie Deng
The Bedrosian Identity for Lp Function and the Hardy Space on Tube
AIMS Mathematics
Bedrosian identity|Fourier transform|Hilbert transform|Distribution
title The Bedrosian Identity for Lp Function and the Hardy Space on Tube
title_full The Bedrosian Identity for Lp Function and the Hardy Space on Tube
title_fullStr The Bedrosian Identity for Lp Function and the Hardy Space on Tube
title_full_unstemmed The Bedrosian Identity for Lp Function and the Hardy Space on Tube
title_short The Bedrosian Identity for Lp Function and the Hardy Space on Tube
title_sort bedrosian identity for lp function and the hardy space on tube
topic Bedrosian identity|Fourier transform|Hilbert transform|Distribution
url http://www.aimspress.com/article/10.3934/Math.2016.1.9/fulltext.html
work_keys_str_mv AT zhihongwen thebedrosianidentityforlpfunctionandthehardyspaceontube
AT guantiedeng thebedrosianidentityforlpfunctionandthehardyspaceontube
AT zhihongwen bedrosianidentityforlpfunctionandthehardyspaceontube
AT guantiedeng bedrosianidentityforlpfunctionandthehardyspaceontube