Using a Vegetation Index as a Proxy for Reliability in Surface Reflectance Time Series Reconstruction (RTSR)

Time series of optical remote sensing data are instrumental for monitoring vegetation dynamics, but are hampered by missing or noisy observations due to varying atmospheric conditions. Reconstruction methods have been proposed, most of which focus on time series of a single vegetation index. Under t...

Full description

Bibliographic Details
Main Authors: Pieter Kempeneers, Martin Claverie, Raphaël d’Andrimont
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/15/9/2303
Description
Summary:Time series of optical remote sensing data are instrumental for monitoring vegetation dynamics, but are hampered by missing or noisy observations due to varying atmospheric conditions. Reconstruction methods have been proposed, most of which focus on time series of a single vegetation index. Under the assumption that relatively high vegetation index values can be considered as trustworthy, a successful approach is to adjust the smoothed value to the upper envelope of the time series. However, this assumption does not hold for surface reflectance in general. Clouds and cloud shadows result in, respectively, high and low values in the visible and near infrared part of the electromagnetic spectrum. A novel spectral Reflectance Time Series Reconstruction (RTSR) method is proposed. Smoothed values of surface reflectance values are adjusted to approach the trustworthy observations, using a vegetation index as a proxy for reliability. The Savitzky–Golay filter was used as the smoothing algorithm here, but different filters can be used as well. The RTSR was evaluated on 100 sites in Europe, with a focus on agriculture fields. Its potential was shown using different criteria, including smoothness and the ability to retain trustworthy observations in the original time series with RMSE values in the order of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.01</mn></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.03</mn></mrow></semantics></math></inline-formula> in terms of surface reflectance.
ISSN:2072-4292