Non-Resonant Non-Hyperbolic Singularly Perturbed Neumann Problem

In this brief note, we study the problem of asymptotic behavior of the solutions for non-resonant, singularly perturbed linear Neumann boundary value problems <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow&g...

Full description

Bibliographic Details
Main Author: Robert Vrabel
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/11/8/394
_version_ 1797432515188752384
author Robert Vrabel
author_facet Robert Vrabel
author_sort Robert Vrabel
collection DOAJ
description In this brief note, we study the problem of asymptotic behavior of the solutions for non-resonant, singularly perturbed linear Neumann boundary value problems <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ε</mi><msup><mi>y</mi><mrow><mo>″</mo></mrow></msup><mo>+</mo><mi>k</mi><mi>y</mi><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>y</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>y</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>b</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>></mo><mn>0</mn><mo>,</mo></mrow></semantics></math></inline-formula> with an indication of possible extension to more complex cases. Our approach is based on the analysis of an integral equation associated with this problem.
first_indexed 2024-03-09T10:01:42Z
format Article
id doaj.art-9aa30afd1aeb4b62bef27d22e018707e
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-09T10:01:42Z
publishDate 2022-08-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-9aa30afd1aeb4b62bef27d22e018707e2023-12-01T23:24:37ZengMDPI AGAxioms2075-16802022-08-0111839410.3390/axioms11080394Non-Resonant Non-Hyperbolic Singularly Perturbed Neumann ProblemRobert Vrabel0Institute of Applied Informatics, Automation and Mechatronics, Slovak University of Technology in Bratislava, Bottova 25, 917 01 Trnava, SlovakiaIn this brief note, we study the problem of asymptotic behavior of the solutions for non-resonant, singularly perturbed linear Neumann boundary value problems <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ε</mi><msup><mi>y</mi><mrow><mo>″</mo></mrow></msup><mo>+</mo><mi>k</mi><mi>y</mi><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>y</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>y</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>b</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>></mo><mn>0</mn><mo>,</mo></mrow></semantics></math></inline-formula> with an indication of possible extension to more complex cases. Our approach is based on the analysis of an integral equation associated with this problem.https://www.mdpi.com/2075-1680/11/8/394singular perturbationlinear ordinary differential equationNeumann boundary value problem
spellingShingle Robert Vrabel
Non-Resonant Non-Hyperbolic Singularly Perturbed Neumann Problem
Axioms
singular perturbation
linear ordinary differential equation
Neumann boundary value problem
title Non-Resonant Non-Hyperbolic Singularly Perturbed Neumann Problem
title_full Non-Resonant Non-Hyperbolic Singularly Perturbed Neumann Problem
title_fullStr Non-Resonant Non-Hyperbolic Singularly Perturbed Neumann Problem
title_full_unstemmed Non-Resonant Non-Hyperbolic Singularly Perturbed Neumann Problem
title_short Non-Resonant Non-Hyperbolic Singularly Perturbed Neumann Problem
title_sort non resonant non hyperbolic singularly perturbed neumann problem
topic singular perturbation
linear ordinary differential equation
Neumann boundary value problem
url https://www.mdpi.com/2075-1680/11/8/394
work_keys_str_mv AT robertvrabel nonresonantnonhyperbolicsingularlyperturbedneumannproblem