Coupling thermal atomic vapor to an integrated ring resonator
Strongly interacting atom–cavity systems within a network with many nodes constitute a possible realization for a quantum internet which allows for quantum communication and computation on the same platform. To implement such large-scale quantum networks, nanophotonic resonators are promising candid...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2016-01-01
|
Series: | New Journal of Physics |
Subjects: | |
Online Access: | https://doi.org/10.1088/1367-2630/18/10/103031 |
Summary: | Strongly interacting atom–cavity systems within a network with many nodes constitute a possible realization for a quantum internet which allows for quantum communication and computation on the same platform. To implement such large-scale quantum networks, nanophotonic resonators are promising candidates because they can be scalably fabricated and interconnected with waveguides and optical fibers. By integrating arrays of ring resonators into a vapor cell we show that thermal rubidium atoms above room temperature can be coupled to photonic cavities as building blocks for chip-scale hybrid circuits. Although strong coupling is not yet achieved in this first realization, our approach provides a key step towards miniaturization and scalability of atom–cavity systems. |
---|---|
ISSN: | 1367-2630 |