Empowering Adaptive Geolocation-Based Routing for UAV Networks with Reinforcement Learning

Since unmanned aerial vehicles (UAVs), such as drones, are used in various fields due to their high utilization and agile mobility, technologies to deal with multiple UAVs are becoming more important. There are many advantages to using multiple drones in a swarm, but, at the same time, each drone re...

Full description

Bibliographic Details
Main Authors: Changmin Park, Sangmin Lee, Hyeontae Joo, Hwangnam Kim
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Drones
Subjects:
Online Access:https://www.mdpi.com/2504-446X/7/6/387
Description
Summary:Since unmanned aerial vehicles (UAVs), such as drones, are used in various fields due to their high utilization and agile mobility, technologies to deal with multiple UAVs are becoming more important. There are many advantages to using multiple drones in a swarm, but, at the same time, each drone requires a strong connection to some or all of the other drones. This paper presents a superior approach for the UAV network’s routing system without wasting memory and computing power. We design a routing system called the geolocation ad hoc network (GLAN) using geolocation information, and we build an adaptive GLAN (AGLAN) system that applies reinforcement learning to adapt to the changing environment. Furthermore, we increase the learning speed by applying a pseudo-attention function to the existing reinforcement learning. We evaluate the proposed system against traditional routing algorithms.
ISSN:2504-446X