DEVELOPMENT OF INTEGRATION AND ADJUSTMENT METHOD FOR SEQUENTIAL RANGE IMAGES

With increasing widespread use of three-dimensional data, the demand for simplified data acquisition is also increasing. The range camera, which is a simplified sensor, can acquire a dense-range image in a single shot; however, its measuring coverage is narrow and its measuring accuracy is limited....

Full description

Bibliographic Details
Main Authors: K. Nagara, T. Fuse
Format: Article
Language:English
Published: Copernicus Publications 2015-05-01
Series:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-4-W5/177/2015/isprsarchives-XL-4-W5-177-2015.pdf
Description
Summary:With increasing widespread use of three-dimensional data, the demand for simplified data acquisition is also increasing. The range camera, which is a simplified sensor, can acquire a dense-range image in a single shot; however, its measuring coverage is narrow and its measuring accuracy is limited. The former drawback had be overcome by registering sequential range images. This method, however, assumes that the point cloud is error-free. In this paper, we develop an integration method for sequential range images with error adjustment of the point cloud. The proposed method consists of ICP (Iterative Closest Point) algorithm and self-calibration bundle adjustment. The ICP algorithm is considered an initial specification for the bundle adjustment. By applying the bundle adjustment, coordinates of the point cloud are modified and the camera poses are updated. Through experimentation on real data, the efficiency of the proposed method has been confirmed.
ISSN:1682-1750
2194-9034