Mechanical Properties and Fracture Toughness Prediction of Ductile Cast Iron under Thermomechanical Treatment

Temperature has a great influence on the mechanical properties of ductile cast iron or nodular cast iron. A thermomechanical treatment was carried out at various elevated temperatures of 450 °C, 750 °C and 850 °C using a universal testing machine with a tub furnace. Specimens were held at these temp...

Full description

Bibliographic Details
Main Authors: Mohammed Y. Abdellah, Hamzah Alharthi, Rami Alfattani, Dhia K. Suker, H. M. Abu El-Ainin, Ahmed F. Mohamed, Mohamed K. Hassan, Ahmed H. Backar
Format: Article
Language:English
Published: MDPI AG 2024-03-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/14/3/352
_version_ 1797240081911644160
author Mohammed Y. Abdellah
Hamzah Alharthi
Rami Alfattani
Dhia K. Suker
H. M. Abu El-Ainin
Ahmed F. Mohamed
Mohamed K. Hassan
Ahmed H. Backar
author_facet Mohammed Y. Abdellah
Hamzah Alharthi
Rami Alfattani
Dhia K. Suker
H. M. Abu El-Ainin
Ahmed F. Mohamed
Mohamed K. Hassan
Ahmed H. Backar
author_sort Mohammed Y. Abdellah
collection DOAJ
description Temperature has a great influence on the mechanical properties of ductile cast iron or nodular cast iron. A thermomechanical treatment was carried out at various elevated temperatures of 450 °C, 750 °C and 850 °C using a universal testing machine with a tub furnace. Specimens were held at these temperatures for 20 min to ensure a homogeneous temperature distribution along the entire length of the specimen, before a tensile load was applied. Specimens were deformed to various levels of uniform strain (0%, 25%, 50%, 75%, and 100%). These degrees of deformation were measured with a dial gauge attached to a movable cross plate. Three strain rates were used for each specimen and temperature: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.8</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4.5</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>. A simple analytical model was extracted based on the CT tensile test geometry and yield stress and a 0.2% offset strain to measure the fracture toughness (J<sub>IC</sub>). To validate the analytical model, an extended finite element method (XFEM) was implemented for specimens tested at different temperatures, with a strain rate of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.8</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>. The model was then extended to include the tested specimens at other strain rates. The results show that increasing strain rates and temperature, especially at 850 °C, increased the ductility of the cast iron and thus its formability. The largest percentage strains were 1 and 1.5 at a temperature of 750 °C and a strain rate of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.8</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>,</mo></mrow></semantics></math></inline-formula> respectively, and reached their maximum value of 1.7 and 2.2% at 850 °C and a strain rate of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4.5</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>,</mo></mrow></semantics></math></inline-formula> respectively. In addition, the simple and fast analytical model is useful in selecting materials for determining the fracture toughness (J<sub>IC</sub>) at various elevated temperatures and different strain rates.
first_indexed 2024-04-24T18:01:46Z
format Article
id doaj.art-9ac4045194d4483dba4cf04abc0459a4
institution Directory Open Access Journal
issn 2075-4701
language English
last_indexed 2024-04-24T18:01:46Z
publishDate 2024-03-01
publisher MDPI AG
record_format Article
series Metals
spelling doaj.art-9ac4045194d4483dba4cf04abc0459a42024-03-27T13:54:30ZengMDPI AGMetals2075-47012024-03-0114335210.3390/met14030352Mechanical Properties and Fracture Toughness Prediction of Ductile Cast Iron under Thermomechanical TreatmentMohammed Y. Abdellah0Hamzah Alharthi1Rami Alfattani2Dhia K. Suker3H. M. Abu El-Ainin4Ahmed F. Mohamed5Mohamed K. Hassan6Ahmed H. Backar7Mechanical Engineering Department, College of Engineering and Architecture, Umm Al-Qura University, Makkah 21955, Saudi ArabiaMechanical Engineering Department, College of Engineering and Architecture, Umm Al-Qura University, Makkah 21955, Saudi ArabiaMechanical Engineering Department, College of Engineering and Architecture, Umm Al-Qura University, Makkah 21955, Saudi ArabiaMechanical Engineering Department, College of Engineering and Architecture, Umm Al-Qura University, Makkah 21955, Saudi ArabiaProduction Engineering & Design Department, Faculty of Engineering, Minia University, Minia 61111, EgyptMechanical Engineering Department, College of Engineering and Architecture, Umm Al-Qura University, Makkah 21955, Saudi ArabiaMechanical Engineering Department, College of Engineering and Architecture, Umm Al-Qura University, Makkah 21955, Saudi ArabiaMechanical Engineering Department, College of Engineering and Architecture, Umm Al-Qura University, Makkah 21955, Saudi ArabiaTemperature has a great influence on the mechanical properties of ductile cast iron or nodular cast iron. A thermomechanical treatment was carried out at various elevated temperatures of 450 °C, 750 °C and 850 °C using a universal testing machine with a tub furnace. Specimens were held at these temperatures for 20 min to ensure a homogeneous temperature distribution along the entire length of the specimen, before a tensile load was applied. Specimens were deformed to various levels of uniform strain (0%, 25%, 50%, 75%, and 100%). These degrees of deformation were measured with a dial gauge attached to a movable cross plate. Three strain rates were used for each specimen and temperature: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.8</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4.5</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>. A simple analytical model was extracted based on the CT tensile test geometry and yield stress and a 0.2% offset strain to measure the fracture toughness (J<sub>IC</sub>). To validate the analytical model, an extended finite element method (XFEM) was implemented for specimens tested at different temperatures, with a strain rate of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.8</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>. The model was then extended to include the tested specimens at other strain rates. The results show that increasing strain rates and temperature, especially at 850 °C, increased the ductility of the cast iron and thus its formability. The largest percentage strains were 1 and 1.5 at a temperature of 750 °C and a strain rate of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.8</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>,</mo></mrow></semantics></math></inline-formula> respectively, and reached their maximum value of 1.7 and 2.2% at 850 °C and a strain rate of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4.5</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>,</mo></mrow></semantics></math></inline-formula> respectively. In addition, the simple and fast analytical model is useful in selecting materials for determining the fracture toughness (J<sub>IC</sub>) at various elevated temperatures and different strain rates.https://www.mdpi.com/2075-4701/14/3/352ductile cast ironXFEMJ-integralfracture toughnesselongation
spellingShingle Mohammed Y. Abdellah
Hamzah Alharthi
Rami Alfattani
Dhia K. Suker
H. M. Abu El-Ainin
Ahmed F. Mohamed
Mohamed K. Hassan
Ahmed H. Backar
Mechanical Properties and Fracture Toughness Prediction of Ductile Cast Iron under Thermomechanical Treatment
Metals
ductile cast iron
XFEM
J-integral
fracture toughness
elongation
title Mechanical Properties and Fracture Toughness Prediction of Ductile Cast Iron under Thermomechanical Treatment
title_full Mechanical Properties and Fracture Toughness Prediction of Ductile Cast Iron under Thermomechanical Treatment
title_fullStr Mechanical Properties and Fracture Toughness Prediction of Ductile Cast Iron under Thermomechanical Treatment
title_full_unstemmed Mechanical Properties and Fracture Toughness Prediction of Ductile Cast Iron under Thermomechanical Treatment
title_short Mechanical Properties and Fracture Toughness Prediction of Ductile Cast Iron under Thermomechanical Treatment
title_sort mechanical properties and fracture toughness prediction of ductile cast iron under thermomechanical treatment
topic ductile cast iron
XFEM
J-integral
fracture toughness
elongation
url https://www.mdpi.com/2075-4701/14/3/352
work_keys_str_mv AT mohammedyabdellah mechanicalpropertiesandfracturetoughnesspredictionofductilecastironunderthermomechanicaltreatment
AT hamzahalharthi mechanicalpropertiesandfracturetoughnesspredictionofductilecastironunderthermomechanicaltreatment
AT ramialfattani mechanicalpropertiesandfracturetoughnesspredictionofductilecastironunderthermomechanicaltreatment
AT dhiaksuker mechanicalpropertiesandfracturetoughnesspredictionofductilecastironunderthermomechanicaltreatment
AT hmabuelainin mechanicalpropertiesandfracturetoughnesspredictionofductilecastironunderthermomechanicaltreatment
AT ahmedfmohamed mechanicalpropertiesandfracturetoughnesspredictionofductilecastironunderthermomechanicaltreatment
AT mohamedkhassan mechanicalpropertiesandfracturetoughnesspredictionofductilecastironunderthermomechanicaltreatment
AT ahmedhbackar mechanicalpropertiesandfracturetoughnesspredictionofductilecastironunderthermomechanicaltreatment