Mechanical Properties and Fracture Toughness Prediction of Ductile Cast Iron under Thermomechanical Treatment
Temperature has a great influence on the mechanical properties of ductile cast iron or nodular cast iron. A thermomechanical treatment was carried out at various elevated temperatures of 450 °C, 750 °C and 850 °C using a universal testing machine with a tub furnace. Specimens were held at these temp...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-03-01
|
Series: | Metals |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-4701/14/3/352 |
_version_ | 1797240081911644160 |
---|---|
author | Mohammed Y. Abdellah Hamzah Alharthi Rami Alfattani Dhia K. Suker H. M. Abu El-Ainin Ahmed F. Mohamed Mohamed K. Hassan Ahmed H. Backar |
author_facet | Mohammed Y. Abdellah Hamzah Alharthi Rami Alfattani Dhia K. Suker H. M. Abu El-Ainin Ahmed F. Mohamed Mohamed K. Hassan Ahmed H. Backar |
author_sort | Mohammed Y. Abdellah |
collection | DOAJ |
description | Temperature has a great influence on the mechanical properties of ductile cast iron or nodular cast iron. A thermomechanical treatment was carried out at various elevated temperatures of 450 °C, 750 °C and 850 °C using a universal testing machine with a tub furnace. Specimens were held at these temperatures for 20 min to ensure a homogeneous temperature distribution along the entire length of the specimen, before a tensile load was applied. Specimens were deformed to various levels of uniform strain (0%, 25%, 50%, 75%, and 100%). These degrees of deformation were measured with a dial gauge attached to a movable cross plate. Three strain rates were used for each specimen and temperature: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.8</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4.5</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>. A simple analytical model was extracted based on the CT tensile test geometry and yield stress and a 0.2% offset strain to measure the fracture toughness (J<sub>IC</sub>). To validate the analytical model, an extended finite element method (XFEM) was implemented for specimens tested at different temperatures, with a strain rate of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.8</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>. The model was then extended to include the tested specimens at other strain rates. The results show that increasing strain rates and temperature, especially at 850 °C, increased the ductility of the cast iron and thus its formability. The largest percentage strains were 1 and 1.5 at a temperature of 750 °C and a strain rate of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.8</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>,</mo></mrow></semantics></math></inline-formula> respectively, and reached their maximum value of 1.7 and 2.2% at 850 °C and a strain rate of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4.5</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>,</mo></mrow></semantics></math></inline-formula> respectively. In addition, the simple and fast analytical model is useful in selecting materials for determining the fracture toughness (J<sub>IC</sub>) at various elevated temperatures and different strain rates. |
first_indexed | 2024-04-24T18:01:46Z |
format | Article |
id | doaj.art-9ac4045194d4483dba4cf04abc0459a4 |
institution | Directory Open Access Journal |
issn | 2075-4701 |
language | English |
last_indexed | 2024-04-24T18:01:46Z |
publishDate | 2024-03-01 |
publisher | MDPI AG |
record_format | Article |
series | Metals |
spelling | doaj.art-9ac4045194d4483dba4cf04abc0459a42024-03-27T13:54:30ZengMDPI AGMetals2075-47012024-03-0114335210.3390/met14030352Mechanical Properties and Fracture Toughness Prediction of Ductile Cast Iron under Thermomechanical TreatmentMohammed Y. Abdellah0Hamzah Alharthi1Rami Alfattani2Dhia K. Suker3H. M. Abu El-Ainin4Ahmed F. Mohamed5Mohamed K. Hassan6Ahmed H. Backar7Mechanical Engineering Department, College of Engineering and Architecture, Umm Al-Qura University, Makkah 21955, Saudi ArabiaMechanical Engineering Department, College of Engineering and Architecture, Umm Al-Qura University, Makkah 21955, Saudi ArabiaMechanical Engineering Department, College of Engineering and Architecture, Umm Al-Qura University, Makkah 21955, Saudi ArabiaMechanical Engineering Department, College of Engineering and Architecture, Umm Al-Qura University, Makkah 21955, Saudi ArabiaProduction Engineering & Design Department, Faculty of Engineering, Minia University, Minia 61111, EgyptMechanical Engineering Department, College of Engineering and Architecture, Umm Al-Qura University, Makkah 21955, Saudi ArabiaMechanical Engineering Department, College of Engineering and Architecture, Umm Al-Qura University, Makkah 21955, Saudi ArabiaMechanical Engineering Department, College of Engineering and Architecture, Umm Al-Qura University, Makkah 21955, Saudi ArabiaTemperature has a great influence on the mechanical properties of ductile cast iron or nodular cast iron. A thermomechanical treatment was carried out at various elevated temperatures of 450 °C, 750 °C and 850 °C using a universal testing machine with a tub furnace. Specimens were held at these temperatures for 20 min to ensure a homogeneous temperature distribution along the entire length of the specimen, before a tensile load was applied. Specimens were deformed to various levels of uniform strain (0%, 25%, 50%, 75%, and 100%). These degrees of deformation were measured with a dial gauge attached to a movable cross plate. Three strain rates were used for each specimen and temperature: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.8</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4.5</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>. A simple analytical model was extracted based on the CT tensile test geometry and yield stress and a 0.2% offset strain to measure the fracture toughness (J<sub>IC</sub>). To validate the analytical model, an extended finite element method (XFEM) was implemented for specimens tested at different temperatures, with a strain rate of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.8</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>. The model was then extended to include the tested specimens at other strain rates. The results show that increasing strain rates and temperature, especially at 850 °C, increased the ductility of the cast iron and thus its formability. The largest percentage strains were 1 and 1.5 at a temperature of 750 °C and a strain rate of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.8</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>,</mo></mrow></semantics></math></inline-formula> respectively, and reached their maximum value of 1.7 and 2.2% at 850 °C and a strain rate of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4.5</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>,</mo></mrow></semantics></math></inline-formula> respectively. In addition, the simple and fast analytical model is useful in selecting materials for determining the fracture toughness (J<sub>IC</sub>) at various elevated temperatures and different strain rates.https://www.mdpi.com/2075-4701/14/3/352ductile cast ironXFEMJ-integralfracture toughnesselongation |
spellingShingle | Mohammed Y. Abdellah Hamzah Alharthi Rami Alfattani Dhia K. Suker H. M. Abu El-Ainin Ahmed F. Mohamed Mohamed K. Hassan Ahmed H. Backar Mechanical Properties and Fracture Toughness Prediction of Ductile Cast Iron under Thermomechanical Treatment Metals ductile cast iron XFEM J-integral fracture toughness elongation |
title | Mechanical Properties and Fracture Toughness Prediction of Ductile Cast Iron under Thermomechanical Treatment |
title_full | Mechanical Properties and Fracture Toughness Prediction of Ductile Cast Iron under Thermomechanical Treatment |
title_fullStr | Mechanical Properties and Fracture Toughness Prediction of Ductile Cast Iron under Thermomechanical Treatment |
title_full_unstemmed | Mechanical Properties and Fracture Toughness Prediction of Ductile Cast Iron under Thermomechanical Treatment |
title_short | Mechanical Properties and Fracture Toughness Prediction of Ductile Cast Iron under Thermomechanical Treatment |
title_sort | mechanical properties and fracture toughness prediction of ductile cast iron under thermomechanical treatment |
topic | ductile cast iron XFEM J-integral fracture toughness elongation |
url | https://www.mdpi.com/2075-4701/14/3/352 |
work_keys_str_mv | AT mohammedyabdellah mechanicalpropertiesandfracturetoughnesspredictionofductilecastironunderthermomechanicaltreatment AT hamzahalharthi mechanicalpropertiesandfracturetoughnesspredictionofductilecastironunderthermomechanicaltreatment AT ramialfattani mechanicalpropertiesandfracturetoughnesspredictionofductilecastironunderthermomechanicaltreatment AT dhiaksuker mechanicalpropertiesandfracturetoughnesspredictionofductilecastironunderthermomechanicaltreatment AT hmabuelainin mechanicalpropertiesandfracturetoughnesspredictionofductilecastironunderthermomechanicaltreatment AT ahmedfmohamed mechanicalpropertiesandfracturetoughnesspredictionofductilecastironunderthermomechanicaltreatment AT mohamedkhassan mechanicalpropertiesandfracturetoughnesspredictionofductilecastironunderthermomechanicaltreatment AT ahmedhbackar mechanicalpropertiesandfracturetoughnesspredictionofductilecastironunderthermomechanicaltreatment |