Beyond Stochastic Gradient Descent for Matrix Completion Based Indoor Localization

In this paper, we propose a high accuracy fingerprint-based localization scheme for the Internet of Things (IoT). The proposed scheme employs mathematical concepts based on sparse representation and matrix completion theories. Specifically, the proposed indoor localization scheme is formulated as a...

Full description

Bibliographic Details
Main Authors: Wafa Njima, Rafik Zayani, Iness Ahriz, Michel Terre, Ridha Bouallegue
Format: Article
Language:English
Published: MDPI AG 2019-06-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/9/12/2414
Description
Summary:In this paper, we propose a high accuracy fingerprint-based localization scheme for the Internet of Things (IoT). The proposed scheme employs mathematical concepts based on sparse representation and matrix completion theories. Specifically, the proposed indoor localization scheme is formulated as a simple optimization problem which enables efficient and reliable algorithm implementations. Many approaches, like Nesterov accelerated gradient (Nesterov), Adaptative Moment Estimation (Adam), Adadelta, Root Mean Square Propagation (RMSProp) and Adaptative gradient (Adagrad), have been implemented and compared in terms of localization accuracy and complexity. Simulation results demonstrate that Adam outperforms all other algorithms in terms of localization accuracy and computational complexity.
ISSN:2076-3417