The 3-Rainbow Index of a Graph

Let G be a nontrivial connected graph with an edge-coloring c : E(G) → {1, 2, . . . , q}, q ∈ ℕ, where adjacent edges may be colored the same. A tree T in G is a rainbow tree if no two edges of T receive the same color. For a vertex subset S ⊆ V (G), a tree that connects S in G is called an S-tree....

Full description

Bibliographic Details
Main Authors: Chen Lily, Li Xueliang, Yang Kang, Zhao Yan
Format: Article
Language:English
Published: University of Zielona Góra 2015-02-01
Series:Discussiones Mathematicae Graph Theory
Subjects:
Online Access:https://doi.org/10.7151/dmgt.1780
Description
Summary:Let G be a nontrivial connected graph with an edge-coloring c : E(G) → {1, 2, . . . , q}, q ∈ ℕ, where adjacent edges may be colored the same. A tree T in G is a rainbow tree if no two edges of T receive the same color. For a vertex subset S ⊆ V (G), a tree that connects S in G is called an S-tree. The minimum number of colors that are needed in an edge-coloring of G such that there is a rainbow S-tree for each k-subset S of V (G) is called the k-rainbow index of G, denoted by rxk(G). In this paper, we first determine the graphs of size m whose 3-rainbow index equals m, m − 1, m − 2 or 2. We also obtain the exact values of rx3(G) when G is a regular multipartite complete graph or a wheel. Finally, we give a sharp upper bound for rx3(G) when G is 2-connected and 2-edge connected. Graphs G for which rx3(G) attains this upper bound are determined.
ISSN:2083-5892