Study on the Design and Experimental Research on a Bionic Crab Robot with Amphibious Multi-Modal Movement

Bionic amphibious robots are the intersection of biology and robotics; they have the advantages of environmental adaptability and maneuverability. An amphibious robot that combines walking and swimming move modes inspired by a crab (Portunus) is presented in this article. The outstanding characteris...

Full description

Bibliographic Details
Main Authors: Xi Chen, Jiawei Li, Shihao Hu, Songjie Han, Kaixin Liu, Biye Pan, Jixin Wang, Gang Wang, Xinmeng Ma
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/10/12/1804
Description
Summary:Bionic amphibious robots are the intersection of biology and robotics; they have the advantages of environmental adaptability and maneuverability. An amphibious robot that combines walking and swimming move modes inspired by a crab (Portunus) is presented in this article. The outstanding characteristic of the robot is that its environmental adaptability relies on the bionic multi-modal movement, which is based on two modular bionic swimming legs and six modular walking legs. We designed the biomimetic crab robot based on the biological observation results. The design, analysis, and simulation of its structure and motion parameters are introduced in this paper. The swimming propulsion capability and the walking performance are verified through indoor, pool, and seaside experiments. In conclusion, the designed bionic crab robot provides a platform with practical application capabilities in amphibious environment detection, concealed reconnaissance, and aquaculture.
ISSN:2077-1312