Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures

We prove that a connected Riemannian manifold admitting a pair of non-trivial Einstein-Weyl structures $(g, \pmømega)$ with constant scalar curvature is either Einstein, or the dual field of $ømega$ is Killing. Next, let $(M^n, g)$ be a complete and connected Riemannian manifold of dimension at leas...

Full description

Bibliographic Details
Main Author: Amalendu Ghosh
Format: Article
Language:English
Published: Institute of Mathematics of the Czech Academy of Science 2016-10-01
Series:Mathematica Bohemica
Subjects:
Online Access:http://mb.math.cas.cz/full/141/3/mb141_3_2.pdf
_version_ 1818293461832433664
author Amalendu Ghosh
author_facet Amalendu Ghosh
author_sort Amalendu Ghosh
collection DOAJ
description We prove that a connected Riemannian manifold admitting a pair of non-trivial Einstein-Weyl structures $(g, \pmømega)$ with constant scalar curvature is either Einstein, or the dual field of $ømega$ is Killing. Next, let $(M^n, g)$ be a complete and connected Riemannian manifold of dimension at least $3$ admitting a pair of Einstein-Weyl structures $(g, \pmømega)$. Then the Einstein-Weyl vector field $E$ (dual to the $1$-form $ømega$) generates an infinitesimal harmonic transformation if and only if $E$ is Killing.
first_indexed 2024-12-13T03:16:14Z
format Article
id doaj.art-9add0ed8e3064ce8b16b6c2f8d87d33b
institution Directory Open Access Journal
issn 0862-7959
2464-7136
language English
last_indexed 2024-12-13T03:16:14Z
publishDate 2016-10-01
publisher Institute of Mathematics of the Czech Academy of Science
record_format Article
series Mathematica Bohemica
spelling doaj.art-9add0ed8e3064ce8b16b6c2f8d87d33b2022-12-22T00:01:29ZengInstitute of Mathematics of the Czech Academy of ScienceMathematica Bohemica0862-79592464-71362016-10-01141331532510.21136/MB.2016.0072-14MB.2016.0072-14Complete Riemannian manifolds admitting a pair of Einstein-Weyl structuresAmalendu GhoshWe prove that a connected Riemannian manifold admitting a pair of non-trivial Einstein-Weyl structures $(g, \pmømega)$ with constant scalar curvature is either Einstein, or the dual field of $ømega$ is Killing. Next, let $(M^n, g)$ be a complete and connected Riemannian manifold of dimension at least $3$ admitting a pair of Einstein-Weyl structures $(g, \pmømega)$. Then the Einstein-Weyl vector field $E$ (dual to the $1$-form $ømega$) generates an infinitesimal harmonic transformation if and only if $E$ is Killing.http://mb.math.cas.cz/full/141/3/mb141_3_2.pdf Weyl manifold Einstein-Weyl structure infinitesimal harmonic transformation
spellingShingle Amalendu Ghosh
Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures
Mathematica Bohemica
Weyl manifold
Einstein-Weyl structure
infinitesimal harmonic transformation
title Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures
title_full Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures
title_fullStr Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures
title_full_unstemmed Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures
title_short Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures
title_sort complete riemannian manifolds admitting a pair of einstein weyl structures
topic Weyl manifold
Einstein-Weyl structure
infinitesimal harmonic transformation
url http://mb.math.cas.cz/full/141/3/mb141_3_2.pdf
work_keys_str_mv AT amalendughosh completeriemannianmanifoldsadmittingapairofeinsteinweylstructures