Use of Microbial Fuel Cells for the Treatment of Residue Effluents Discharged from an Anaerobic Digester Treating Food Wastes
One of practical challenges in anaerobic-digestion (AD) technology is the cost-effective treatment of residue effluents containing high concentrations of organics, nitrogen and phosphorus (CNP). In order to evaluate the utility of microbial fuel cells (MFCs) for treating anaerobic-digester effluents...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-02-01
|
Series: | Microorganisms |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-2607/11/3/598 |
_version_ | 1797436283445837824 |
---|---|
author | Daichi Yoshizu Atsushi Kouzuma Kazuya Watanabe |
author_facet | Daichi Yoshizu Atsushi Kouzuma Kazuya Watanabe |
author_sort | Daichi Yoshizu |
collection | DOAJ |
description | One of practical challenges in anaerobic-digestion (AD) technology is the cost-effective treatment of residue effluents containing high concentrations of organics, nitrogen and phosphorus (CNP). In order to evaluate the utility of microbial fuel cells (MFCs) for treating anaerobic-digester effluents (ADEs) and generating power from them, laboratory-scale single-chamber MFCs were filled with ADE obtained from a commercial AD plant treating food wastes and thereafter operated by routinely supplying ADE at different hydraulic residence times (HRTs, 5 to 20 days). It is shown that MFCs were able to reduce not only organics in ADE but also nitrogen and phosphorus. For instance, data demonstrated that over 50% of CNP was removed in MFCs operated at an HRT of 10 days, at which the maximum power density reached over 200 mW m<sup>−2</sup> (based on the projected area of anode). Metabarcoding of 16S rRNA genes showed that some bacteria were specifically enriched in anode biofilms, suggesting their involvement in power generation. Our study suggests that MFCs are applicable to reducing CNP in ADEs at reasonable rates, and provides subsequent work with fundamental data useful for setting targets for further developments. |
first_indexed | 2024-03-09T11:00:22Z |
format | Article |
id | doaj.art-9ae7b380482346ac843138b101bb73d3 |
institution | Directory Open Access Journal |
issn | 2076-2607 |
language | English |
last_indexed | 2024-03-09T11:00:22Z |
publishDate | 2023-02-01 |
publisher | MDPI AG |
record_format | Article |
series | Microorganisms |
spelling | doaj.art-9ae7b380482346ac843138b101bb73d32023-12-01T01:21:06ZengMDPI AGMicroorganisms2076-26072023-02-0111359810.3390/microorganisms11030598Use of Microbial Fuel Cells for the Treatment of Residue Effluents Discharged from an Anaerobic Digester Treating Food WastesDaichi Yoshizu0Atsushi Kouzuma1Kazuya Watanabe2Laboratory of Bioenergy Science and Technology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, JapanLaboratory of Bioenergy Science and Technology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, JapanLaboratory of Bioenergy Science and Technology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, JapanOne of practical challenges in anaerobic-digestion (AD) technology is the cost-effective treatment of residue effluents containing high concentrations of organics, nitrogen and phosphorus (CNP). In order to evaluate the utility of microbial fuel cells (MFCs) for treating anaerobic-digester effluents (ADEs) and generating power from them, laboratory-scale single-chamber MFCs were filled with ADE obtained from a commercial AD plant treating food wastes and thereafter operated by routinely supplying ADE at different hydraulic residence times (HRTs, 5 to 20 days). It is shown that MFCs were able to reduce not only organics in ADE but also nitrogen and phosphorus. For instance, data demonstrated that over 50% of CNP was removed in MFCs operated at an HRT of 10 days, at which the maximum power density reached over 200 mW m<sup>−2</sup> (based on the projected area of anode). Metabarcoding of 16S rRNA genes showed that some bacteria were specifically enriched in anode biofilms, suggesting their involvement in power generation. Our study suggests that MFCs are applicable to reducing CNP in ADEs at reasonable rates, and provides subsequent work with fundamental data useful for setting targets for further developments.https://www.mdpi.com/2076-2607/11/3/598anaerobic digestermicrobial fuel celltotal nitrogentotal phosphorushydraulic residence time |
spellingShingle | Daichi Yoshizu Atsushi Kouzuma Kazuya Watanabe Use of Microbial Fuel Cells for the Treatment of Residue Effluents Discharged from an Anaerobic Digester Treating Food Wastes Microorganisms anaerobic digester microbial fuel cell total nitrogen total phosphorus hydraulic residence time |
title | Use of Microbial Fuel Cells for the Treatment of Residue Effluents Discharged from an Anaerobic Digester Treating Food Wastes |
title_full | Use of Microbial Fuel Cells for the Treatment of Residue Effluents Discharged from an Anaerobic Digester Treating Food Wastes |
title_fullStr | Use of Microbial Fuel Cells for the Treatment of Residue Effluents Discharged from an Anaerobic Digester Treating Food Wastes |
title_full_unstemmed | Use of Microbial Fuel Cells for the Treatment of Residue Effluents Discharged from an Anaerobic Digester Treating Food Wastes |
title_short | Use of Microbial Fuel Cells for the Treatment of Residue Effluents Discharged from an Anaerobic Digester Treating Food Wastes |
title_sort | use of microbial fuel cells for the treatment of residue effluents discharged from an anaerobic digester treating food wastes |
topic | anaerobic digester microbial fuel cell total nitrogen total phosphorus hydraulic residence time |
url | https://www.mdpi.com/2076-2607/11/3/598 |
work_keys_str_mv | AT daichiyoshizu useofmicrobialfuelcellsforthetreatmentofresidueeffluentsdischargedfromananaerobicdigestertreatingfoodwastes AT atsushikouzuma useofmicrobialfuelcellsforthetreatmentofresidueeffluentsdischargedfromananaerobicdigestertreatingfoodwastes AT kazuyawatanabe useofmicrobialfuelcellsforthetreatmentofresidueeffluentsdischargedfromananaerobicdigestertreatingfoodwastes |