Common Independence in Graphs

The cardinality of a largest independent set of <i>G</i>, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>(</mo><mi>G</mi><mo>...

Full description

Bibliographic Details
Main Authors: Magda Dettlaff, Magdalena Lemańska, Jerzy Topp
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/8/1411
_version_ 1797522019780132864
author Magda Dettlaff
Magdalena Lemańska
Jerzy Topp
author_facet Magda Dettlaff
Magdalena Lemańska
Jerzy Topp
author_sort Magda Dettlaff
collection DOAJ
description The cardinality of a largest independent set of <i>G</i>, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula>, is called the independence number of <i>G</i>. The independent domination number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> of a graph <i>G</i> is the cardinality of a smallest independent dominating set of <i>G</i>. We introduce the concept of the <i>common independence number</i> of a graph <i>G</i>, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>α</mi><mi>c</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, as the greatest integer <i>r</i> such that every vertex of <i>G</i> belongs to some independent subset <i>X</i> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>V</mi><mi>G</mi></msub></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>|</mo><mi>X</mi><mo>|</mo><mo>≥</mo><mi>r</mi></mrow></semantics></math></inline-formula>. The common independence number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>α</mi><mi>c</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of <i>G</i> is the limit of symmetry in <i>G</i> with respect to the fact that each vertex of <i>G</i> belongs to an independent set of cardinality <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>α</mi><mi>c</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> in <i>G</i>, and there are vertices in <i>G</i> that do not belong to any larger independent set in G. For any graph <i>G</i>, the relations between above parameters are given by the chain of inequalities <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><msub><mi>α</mi><mi>c</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>α</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. In this paper, we characterize the trees <i>T</i> for which <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>α</mi><mi>c</mi></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, and the block graphs <i>G</i> for which <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>α</mi><mi>c</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>α</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>.
first_indexed 2024-03-10T08:20:40Z
format Article
id doaj.art-9af732d735c24421a562f0febd87bd78
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-10T08:20:40Z
publishDate 2021-08-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-9af732d735c24421a562f0febd87bd782023-11-22T10:01:02ZengMDPI AGSymmetry2073-89942021-08-01138141110.3390/sym13081411Common Independence in GraphsMagda Dettlaff0Magdalena Lemańska1Jerzy Topp2Technical Physics and Applied Mathematics Department, Gdańsk University of Technology, 80-803 Gdańsk, PolandTechnical Physics and Applied Mathematics Department, Gdańsk University of Technology, 80-803 Gdańsk, PolandInstitute of Applied Informatics, The State University of Applied Sciences in Elbla̧g, 82-300 Elbla̧g, PolandThe cardinality of a largest independent set of <i>G</i>, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula>, is called the independence number of <i>G</i>. The independent domination number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> of a graph <i>G</i> is the cardinality of a smallest independent dominating set of <i>G</i>. We introduce the concept of the <i>common independence number</i> of a graph <i>G</i>, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>α</mi><mi>c</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, as the greatest integer <i>r</i> such that every vertex of <i>G</i> belongs to some independent subset <i>X</i> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>V</mi><mi>G</mi></msub></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>|</mo><mi>X</mi><mo>|</mo><mo>≥</mo><mi>r</mi></mrow></semantics></math></inline-formula>. The common independence number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>α</mi><mi>c</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of <i>G</i> is the limit of symmetry in <i>G</i> with respect to the fact that each vertex of <i>G</i> belongs to an independent set of cardinality <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>α</mi><mi>c</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> in <i>G</i>, and there are vertices in <i>G</i> that do not belong to any larger independent set in G. For any graph <i>G</i>, the relations between above parameters are given by the chain of inequalities <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><msub><mi>α</mi><mi>c</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>α</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. In this paper, we characterize the trees <i>T</i> for which <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>α</mi><mi>c</mi></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, and the block graphs <i>G</i> for which <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>α</mi><mi>c</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>α</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2073-8994/13/8/1411independence numberdomination numberindependence domination numbercommon independence number
spellingShingle Magda Dettlaff
Magdalena Lemańska
Jerzy Topp
Common Independence in Graphs
Symmetry
independence number
domination number
independence domination number
common independence number
title Common Independence in Graphs
title_full Common Independence in Graphs
title_fullStr Common Independence in Graphs
title_full_unstemmed Common Independence in Graphs
title_short Common Independence in Graphs
title_sort common independence in graphs
topic independence number
domination number
independence domination number
common independence number
url https://www.mdpi.com/2073-8994/13/8/1411
work_keys_str_mv AT magdadettlaff commonindependenceingraphs
AT magdalenalemanska commonindependenceingraphs
AT jerzytopp commonindependenceingraphs