Ruin Analysis on a New Risk Model with Stochastic Premiums and Dependence Based on Time Series for Count Random Variables
In this paper, we propose a new discrete-time risk model of an insurance portfolio with stochastic premiums, in which the temporal dependence among the premium numbers of consecutive periods is fitted by the first-order integer-valued autoregressive (INAR(1)) process and the temporal dependence amon...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-04-01
|
Series: | Entropy |
Subjects: | |
Online Access: | https://www.mdpi.com/1099-4300/25/4/698 |
Summary: | In this paper, we propose a new discrete-time risk model of an insurance portfolio with stochastic premiums, in which the temporal dependence among the premium numbers of consecutive periods is fitted by the first-order integer-valued autoregressive (INAR(1)) process and the temporal dependence among the claim numbers of consecutive periods is described by the integer-valued moving average (INMA(1)) process. To measure the risk of the model quantitatively, we study the explicit expression for a function whose solution is defined as the Lundberg adjustment coefficient and give the Lundberg approximation formula for the infinite-time ruin probability. In the case of heavy-tailed claim sizes, we establish the asymptotic formula for the finite-time ruin probability via the large deviations of the aggregate claims. Two numerical examples are provided in order to illustrate our theoretical findings. |
---|---|
ISSN: | 1099-4300 |