Design and optimization of a novel 3D detector: The 3D-open-shell-electrode detector

A new type of three-dimensional (3D) detector, namely 3D-Open-Shell-Electrode Detector (3DOSED), is proposed in this study. In a 3DOSED, the trench electrode can be etched all the way through the detector thickness, totally eliminating the low electric field region existed in the conventional 3D-Tre...

Full description

Bibliographic Details
Main Authors: Manwen Liu, Jian Tan, Zheng Li
Format: Article
Language:English
Published: AIP Publishing LLC 2018-04-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.5023188
Description
Summary:A new type of three-dimensional (3D) detector, namely 3D-Open-Shell-Electrode Detector (3DOSED), is proposed in this study. In a 3DOSED, the trench electrode can be etched all the way through the detector thickness, totally eliminating the low electric field region existed in the conventional 3D-Trench-Electrode detector. Full 3D technology computer-aided design (TCAD) simulations have been done on this novel silicon detector structure. Through comparing of the simulation results of the detector, we can obtain the best design of the 3SOSED. In addition, simulation results show that, as compared to the conventional 3D detector, the proposed 3DOSED can improve not only detector charge collection efficiency but also its radiation hardness with regard to solving the trapping problem in the detector bulk. What is more, it has been shown that detector full depletion voltage is also slightly reduced, which can improve the utility aspects of the detector. When compared to the conventional 3D detector, we find that the proposed novel 3DOSED structure has better electric potential and electric field distributions, and better electrical properties such as detector full depletion voltage. In 3DOSED array, each pixel cell is isolated from each other by highly doped trenches, but also electrically and physically connected with each other through the remaining silicon bulk between broken electrodes.
ISSN:2158-3226