Semiclassical solutions for linearly coupled Schrodinger equations

We consider the system of coupled nonlinear Schrodinger equations $$\displaylines{ -\varepsilon^2\Delta u+a(x) u=H_{u}(x, u, v)+\mu(x) v, \quad x\in \mathbb{R}^N,\cr -\varepsilon^2\Delta v+b(x) v=H_{v}(x, u, v)+\mu(x) u, \quad x\in \mathbb{R}^N,\cr u,v\in H^1(\mathbb{R}^N), }$$ where $N\geq...

Full description

Bibliographic Details
Main Authors: Sitong Chen, Xianhua Tang
Format: Article
Language:English
Published: Texas State University 2014-12-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2014/251/abstr.html
Description
Summary:We consider the system of coupled nonlinear Schrodinger equations $$\displaylines{ -\varepsilon^2\Delta u+a(x) u=H_{u}(x, u, v)+\mu(x) v, \quad x\in \mathbb{R}^N,\cr -\varepsilon^2\Delta v+b(x) v=H_{v}(x, u, v)+\mu(x) u, \quad x\in \mathbb{R}^N,\cr u,v\in H^1(\mathbb{R}^N), }$$ where $N\geq 3$, $a, b, \mu \in C(\mathbb{R}^N)$ and $H_{u}, H_{v}\in C(\mathbb{R}^N\times \mathbb{R}^2, \mathbb{R})$. Under conditions that $a_0=\inf a=0$ or $b_0=\inf b=0$ and $|\mu(x)|^2\le \theta a(x)b(x)$ with $\theta\in(0, 1)$ and some mild assumptions on $H$, we show that the system has at least one nontrivial solution provided that $0<\varepsilon\le \varepsilon_0$, where the bound $\varepsilon_0$ is formulated in terms of N, a, b and H.
ISSN:1072-6691