Development of novel monoclonal antibodies against nsp12 of SARS-CoV-2

Abstract A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a global pandemic of coronavirus disease 19. Coronaviruses, including SARS-CoV-2, use RNA-dependent RNA polymerase (RdRP) for viral replication and transcription. Since RdRP is a promising therapeu...

Full description

Bibliographic Details
Main Authors: Mitsuhiro Machitani, Junko Takei, Mika K. Kaneko, Saori Ueki, Hirofumi Ohashi, Koichi Watashi, Yukinari Kato, Kenkichi Masutomi
Format: Article
Language:English
Published: BMC 2022-12-01
Series:Virology Journal
Subjects:
Online Access:https://doi.org/10.1186/s12985-022-01948-2
Description
Summary:Abstract A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a global pandemic of coronavirus disease 19. Coronaviruses, including SARS-CoV-2, use RNA-dependent RNA polymerase (RdRP) for viral replication and transcription. Since RdRP is a promising therapeutic target for infection of SARS-CoV-2, it would be beneficial to develop new experimental tools for analysis of the RdRP reaction of SARS-CoV-2. Here, we succeeded to develop novel mouse monoclonal antibodies (mAbs) that recognize SARS-CoV-2 nsp12, catalytic subunit of the RdRP. These anti-nsp12 mAbs, RdMab-2, -13, and -20, specifically recognize SARS-CoV-2 nsp12 by western blotting analysis, while they exhibit less or no cross-reactivity to SARS-CoV nsp12. In addition, SARS-CoV-2 nsp12 was successfully immunoprecipitated using RdMab-2 from lysates of cells overexpressing SARS-CoV-2 nsp12. RdMab-2 was able to detect SARS-CoV-2 nsp12 transiently expressed in established culture cells such as HEK293T cells by indirect immunofluorescence technique. These novel mAbs against SARS-CoV-2 nsp12 are useful to elucidate the RdRP reaction of SARS-CoV-2 and biological cell response against it.
ISSN:1743-422X